Architectures Analogiques Transmission Information - Semestre 7
Annee Universitaire : 2023-2024
Semestre : 7
Credits : 2.5 ECTS
Specialite : Electronique Analogique et RF
PART A - Presentation Generale du Module
Vue d'ensemble
Ce cours aborde les architectures analogiques pour la transmission d'information, avec un focus sur les systemes de modulation/demodulation et les chaines d'emission/reception radio-frequence (RF). Il couvre les techniques de modulation analogique (AM, FM), les oscillateurs, les multiplieurs, et les architectures de recepteurs.
Objectifs pedagogiques :
- Maitriser les techniques de modulation et demodulation analogiques
- Comprendre les architectures de chaines RF (emission et reception)
- Concevoir des oscillateurs et circuits de synthese de frequence
- Analyser les performances des systemes de transmission (bruit, linearite)
- Dimensionner des circuits pour applications radio
Position dans le cursus
Ce module s'appuie sur :
- Electronique Fonctions Analogiques (S6) : AOPs, filtres actifs
- Signal (S5) : modulation, transformee de Fourier
- Circuits et Filtres analogiques (S5) : filtres, adaptation d'impedance
Il prepare a :
- Telecommunications : conception de systemes RF
- Systemes embarques communicants : IoT, radio courte portee
- Instrumentation RF : generateurs, analyseurs
PART B - Experience Personnelle et Contexte d'Apprentissage
Organisation et ressources
Le module etait organise en cours magistraux et travaux diriges :
Cours magistraux (20h) :
Couvrant les themes principaux :
- Modulation et demodulation AM/FM
- Oscillateurs (theorie et applications)
- Multiplieurs analogiques
- Architectures de recepteurs (superheterodyne)
- Boucles a verrouillage de phase (PLL)
Travaux diriges (16h) :
5 TD avec corrections disponibles :
- TD1 a TD5 : exercices d'application sur modulation, oscillateurs, multiplieurs
Supports pedagogiques :
- Document de cours principal (ArchiUF_2022-2023.pdf)
- Notes de cours sur oscillateurs (Notes-cours-Theorie-Osc.pdf)
- Documents techniques (multiplieurs ADI, oscillateurs a quartz)
- Annales 2018-2019, 2021-2022 avec corrections
Contenu des ressources
Documents techniques disponibles :
- Multiplieurs : ADI Multiplier Applications Guide, multiplieurs 1 a 4 quadrants
- Oscillateurs : theorie, oscillateurs a quartz (AN3208)
- Modulation FM : modulation et demodulation FM
- Detection : demodulation par detection d'enveloppe
- Circuits specifiques : RLC avec resistance negative, redresseur sans seuil
Methode de travail
Cours theorique :
Beaucoup de schemas et d'analyses de circuits. Comprehension des principes de fonctionnement des modulateurs, demodulateurs, et oscillateurs.
TD pratiques :
Calculs de performances (taux de modulation, deviation de frequence, gain, bruit). Dimensionnement de composants.
Annales :
Examens de 2018-2019 et 2021-2022 avec corrections pour s'entrainer.
Difficultes rencontrees
Analyse frequentielle :
Comprendre le spectre des signaux modules (raies, bandes laterales) demande une bonne maitrise de la transformee de Fourier.
Circuits RF complexes :
Les architectures superheterodynes avec changements de frequence multiples sont complexes a apprehender.
Oscillateurs :
Conditions d'oscillation (Barkhausen), stabilite de frequence, bruit de phase sont des concepts subtils.
PART C - Aspects Techniques Detailles
1. Modulation d'amplitude (AM)
Principe :
Faire varier l'amplitude d'un signal porteur sinusoidal en fonction du signal d'information (message).
Signal porteur : p(t) = Vp cos(2π fp t)
Signal modulant (message) : m(t)
Signal module AM : s(t) = Vp [1 + m × m(t)] cos(2π fp t)
ou m est l'indice de modulation (0 < m <= 1).
Indice de modulation :
m = (Vmax - Vmin) / (Vmax + Vmin)
- Si m < 1 : pas de surmodulation (bon)
- Si m > 1 : surmodulation, distorsion (mauvais)
Spectre du signal AM :
Pour un signal modulant sinusoidal m(t) = cos(2π fm t) :
s(t) = Vp cos(2π fp t) + (m Vp / 2) cos(2π (fp + fm) t) + (m Vp / 2) cos(2π (fp - fm) t)
Trois composantes :
- Porteuse a fp
- Bande laterale superieure a fp + fm
- Bande laterale inferieure a fp - fm
Bande passante :
BW = 2 × fm (frequence max du message)
Efficacite :
La porteuse ne contient pas d'information utile. Puissance utile seulement dans les bandes laterales.
Rendement energetique = m² / (2 + m²)
Pour m = 1 : rendement = 33% (faible !)
Variantes :
| Type | Description | Avantage |
|---|---|---|
| AM classique | Porteuse + 2 BL | Simple a demoduler |
| DSB (Double Sideband) | 2 BL sans porteuse | Meilleur rendement |
| SSB (Single Sideband) | 1 BL seulement | Bande passante divisee par 2 |
2. Demodulation AM
Detection d'enveloppe :
Methode la plus simple pour demoduler l'AM.
Circuit :
- Diode (redressement)
- Condensateur (filtrage)
- Resistance (charge)
Principe :
La diode redresse le signal module. Le condensateur suit l'enveloppe (amplitude variable) du signal.
Dimensionnement :
Constante de temps RC doit verifier :
- 1/fp << RC (pour filtrer la porteuse)
- RC << 1/fm (pour suivre les variations du message)
Compromis : 1/fp << RC << 1/fm
Detection synchrone (demodulation coherente) :
Multiplier le signal recu par une porteuse synchrone (meme frequence et phase).
Necessite une recuperation de porteuse (PLL).
Plus complexe mais meilleure qualite (fonctionne pour DSB et SSB).
3. Modulation de frequence (FM)
Principe :
Faire varier la frequence de la porteuse proportionnellement au signal modulant.
Frequence instantanee : f(t) = fp + kf × m(t)
ou kf est la sensibilite du modulateur (Hz/V).
Deviation de frequence :
Δf = kf × Vm (amplitude max du message)
Indice de modulation :
β = Δf / fm
ou fm est la frequence du message.
Spectre du signal FM :
Le spectre contient une infinite de raies (theoriquement) espacees de fm.
Amplitude des raies donnee par les fonctions de Bessel Jn(β).
Bande passante (regle de Carson) :
BW = 2 (Δf + fm) = 2 fm (β + 1)
Pour β >> 1 (large bande) : BW ≈ 2 Δf
Pour β << 1 (bande etroite) : BW ≈ 2 fm
FM large bande vs bande etroite :
| Type | β | Bande | Application |
|---|---|---|---|
| NBFM | < 0,5 | 2 fm | Communications radio professionnelles |
| WBFM | > 1 | 2 Δf | Radio FM broadcast (88-108 MHz) |
Avantages de la FM :
- Immunite au bruit d'amplitude
- Meilleure qualite audio
- Capture effect (signal fort capture le recepteur)
Inconvenient :
Bande passante plus large que l'AM.
4. Demodulation FM
Discriminateur de frequence :
Convertit les variations de frequence en variations d'amplitude, puis detection d'enveloppe.
Principe :
- Circuit derivateur ou reseau dephaseur
- Transforme la FM en AM
- Detection d'enveloppe classique
Demodulateur a PLL :
Utilise une boucle a verrouillage de phase (PLL) qui suit la frequence instantanee.
La tension de commande du VCO (dans la PLL) est proportionnelle a la frequence d'entree : c'est le signal demodule.
Avantage :
- Meilleure linearite
- Moins sensible au bruit
5. Oscillateurs
Definition :
Circuit qui genere un signal periodique (sinusoidal ou carre) sans signal d'entree.
Condition d'oscillation (critere de Barkhausen) :
Pour un oscillateur boucle (amplificateur + reseau de retroaction) :
Boucle ouverte : H(jω) = A(jω) × Β(jω)
Conditions pour oscillation a ω0 :
- |H(jω0)| = 1 (gain de boucle = 1)
- arg(H(jω0)) = 0° ou 360° (dephasage de boucle multiple de 360°)
Demarrage des oscillations :
En pratique, on assure |H| legerement > 1 au demarrage pour que les oscillations s'amorcent (a partir du bruit).
Puis un mecanisme de limitation d'amplitude (saturation, compression) stabilise l'amplitude.
Types d'oscillateurs :
Oscillateurs RC :
Reseau de dephasage (3 cellules RC) + amplificateur.
Frequence : f ≈ 1 / (2π RC √6)
Avantage : composants simples
Inconvenient : stabilite moyenne
Oscillateurs LC :
Utilise un circuit resonant LC pour definir la frequence.
Frequence : f0 = 1 / (2π √(LC))
Oscillateur Colpitts :
Resonateur LC avec prise capacitive (2 condensateurs en serie).
Tres utilise en RF pour sa stabilite.
Oscillateur Clapp :
Variante du Colpitts avec condensateur serie dans l'inductance.
Meilleure stabilite en frequence.
Oscillateurs a quartz :
Utilise un cristal de quartz comme resonateur.
Avantages :
- Tres haute stabilite en frequence (ppm)
- Facteur de qualite Q tres eleve (10^4 a 10^6)
Applications :
- Horloges (montres, microcontroleurs)
- Bases de temps precises
- References de frequence
Frequences standards :
- 32,768 kHz (horlogerie)
- 10 MHz (reference laboratoire)
- Quelques MHz a quelques dizaines de MHz (electronique)
6. Multiplieurs analogiques
Definition :
Circuit qui realise la multiplication de deux signaux : Vout = k × V1 × V2
Applications :
| Application | Description |
|---|---|
| Modulation | Multiplier porteuse × message |
| Demodulation | Multiplier signal recu × porteuse locale |
| Melangeur (mixer) | Transposition de frequence |
| Detecteur de phase | Comparaison de phase dans PLL |
| Controle automatique de gain | Multiplication par tension de controle |
| Puissance | Calcul V × I |
Types de multiplieurs :
Multiplicateur 4 quadrants :
V1 et V2 peuvent etre positifs ou negatifs.
Multiplication complete : Vout = k V1 V2
Multiplicateur 2 quadrants :
Un signal bipolaire, l'autre unipolaire.
Multiplicateur 1 quadrant :
Les deux signaux unipolaires (positifs seulement).
Exemple de circuit : cellule de Gilbert :
Circuit a transistors (BJT ou MOS) qui realise une multiplication.
Base de nombreux multiplieurs integres (AD633, AD834, etc.).
Modulation par multiplieur :
AM : s(t) = [Vdc + m(t)] × cos(ωp t)
Le signal modulant est additionne a une composante continue avant multiplication avec la porteuse.
Transposition de frequence (melangeur) :
Multiplier deux signaux sinusoidaux :
V1 = A cos(ω1 t)
V2 = B cos(ω2 t)
Resultat :
Vout = (AB/2) [cos((ω1 - ω2) t) + cos((ω1 + ω2) t)]
Deux nouvelles frequences : somme et difference.
Application : changement de frequence dans recepteurs (superheterodyne).
7. Architectures de recepteurs
Recepteur superheterodyne :
Architecture classique utilisee dans la majorite des recepteurs radio.
Principe :
Transposer le signal RF recu vers une frequence intermediaire fixe (FI) ou le traitement est plus facile.
Blocs fonctionnels :
- Antenne : reception du signal RF
- Filtre RF : selection de la bande (rejet des frequences indesirables)
- Amplificateur RF (LNA) : amplification faible bruit
- Melangeur : transposition RF → FI
- Oscillateur local (OL) : generation de la frequence de transposition
- Filtre FI : selectivite du canal (bande passante etroite)
- Amplificateur FI : gain principal du recepteur
- Demodulateur : extraction du signal d'information
- Amplificateur audio/video : amplification du signal demodule
Frequence intermediaire :
f_FI = |f_RF - f_OL|
Choix typique de FI :
- AM broadcast : 455 kHz ou 10,7 MHz
- FM broadcast : 10,7 MHz
- TV : 36-45 MHz
Avantages du superheterodyne :
- Selectivite elevee (filtre FI fixe, bien optimise)
- Gain eleve stable (amplification a FI fixe)
- Facilite de reglage (varier seulement f_OL)
Probleme de l'image :
Deux frequences RF peuvent donner la meme FI :
- f_RF = f_OL + f_FI (signal desire)
- f_image = f_OL - f_FI (image indesirable)
La frequence image est a 2 × f_FI du signal desire.
Solution :
Filtre RF qui rejette la frequence image avant le melangeur.
Double changement de frequence :
Pour ameliorer le rejet de l'image et la selectivite, on peut utiliser deux FI successives.
RF → FI1 (elevee) → FI2 (basse) → demodulation
Exemple : FI1 = 10,7 MHz, FI2 = 455 kHz
8. Boucle a verrouillage de phase (PLL)
Principe :
Systeme boucle qui asservit la phase (et donc la frequence) d'un oscillateur local sur un signal de reference.
Blocs :
- Comparateur de phase : compare la phase du signal d'entree et du VCO
- Filtre de boucle : filtre passe-bas (integrateur)
- VCO (Voltage Controlled Oscillator) : oscillateur commande en tension
Fonctionnement :
- Si phase VCO en retard : tension de commande augmente → frequence VCO augmente
- Si phase VCO en avance : tension de commande diminue → frequence VCO diminue
En regime verrouille :
Le VCO suit exactement la frequence et la phase de l'entree.
Applications :
| Application | Description |
|---|---|
| Synthese de frequence | Generer des frequences precises et programmables |
| Demodulation FM | La tension de commande du VCO est le signal demodule |
| Recuperation de porteuse | Extraire la porteuse d'un signal module |
| Recuperation d'horloge | Synchronisation dans transmissions numeriques |
| Multiplication de frequence | Avec diviseur dans la boucle |
Synthetiseur de frequence :
PLL avec diviseur de frequence dans la boucle de retour.
f_VCO = N × f_ref
En variant N (diviseur programmable), on genere differentes frequences multiples de f_ref.
Exemple :
- f_ref = 10 kHz (quartz stable)
- N variable de 8800 a 10800
- f_VCO variable de 88 MHz a 108 MHz (bande FM)
Resolution : 10 kHz (pas entre canaux)
9. Circuits specifiques
Redresseur sans seuil :
Redresseur utilisant un AOP pour compenser la chute de tension de la diode (0,6-0,7 V).
Permet de redresser des signaux de faible amplitude (quelques mV).
Circuit :
- AOP en boucle fermee avec diode
- La contre-reaction compense le seuil de la diode
Resistance negative :
Circuit actif (avec AOP ou transistor) qui presente une resistance negative.
Application :
Compenser les pertes dans un circuit RLC pour maintenir les oscillations.
Circuit RLC + resistance negative = oscillateur.
Convertisseur tension-frequence (VCO) :
Circuit dont la frequence de sortie est proportionnelle a la tension d'entree.
f_out = k × V_in
Types :
- VCO LC (inductance-capacite variable, varicap)
- VCO RC (multivibrateur avec temps de charge variable)
- VCO integre (4046, 566, etc.)
Applications :
- Modulation FM (V_in = signal modulant)
- PLL (oscillateur commande)
- Conversion analogique-numerique
10. Performances et specifications
Sensibilite :
Signal minimum detectable par le recepteur.
Limitee par le bruit (thermique + composants).
Sensibilite (dBm) = Plancher de bruit + SNR minimum
Figure de bruit (Noise Figure - NF) :
Mesure la degradation du rapport signal sur bruit due au recepteur.
NF (dB) = SNR_entree (dB) - SNR_sortie (dB)
Pour des etages en cascade (formule de Friis) :
NF_total = NF1 + (NF2 - 1)/G1 + (NF3 - 1)/(G1 × G2) + ...
Importance du premier etage (LNA) : doit avoir faible NF et gain eleve.
Selectivite :
Capacite a separer le canal desire des canaux adjacents.
Definie par la bande passante du filtre FI.
Dynamique :
Plage entre signal minimum (sensibilite) et signal maximum (saturation/intermodulation).
Gain :
Amplification totale du recepteur.
Typiquement 60-120 dB, reparti sur plusieurs etages.
Controle automatique de gain (AGC) :
Circuit qui ajuste automatiquement le gain pour maintenir un niveau de sortie constant malgre les variations du signal d'entree.
Evite la saturation sur signaux forts et maintient SNR sur signaux faibles.
PART D - Analyse Reflexive et Perspectives
Competences acquises
Conception de chaines RF :
Comprehension des architectures completes d'emission et reception. Capacite a dimensionner chaque etage et analyser les performances globales.
Modulation/demodulation :
Maitrise des techniques AM et FM, calculs de spectres, choix de parametres (indice de modulation, deviation).
Circuits RF :
Conception d'oscillateurs, multiplieurs, melangeurs. Comprehension des conditions d'oscillation et stabilite.
Points cles a retenir
1. Superheterodyne = architecture dominante :
La transposition vers FI est la solution standard depuis des decennies. Simple, efficace, eprouvee.
2. Compromis bande/qualite :
AM : bande etroite mais qualite moyenne. FM : bande large mais meilleure qualite et immunite au bruit.
3. Oscillateurs : stabilite cruciale :
La stabilite de frequence des oscillateurs determine la qualite du systeme. Quartz pour haute stabilite.
4. Bruit : limitation fondamentale :
Le bruit thermique et le bruit des composants limitent la sensibilite. Le premier etage (LNA) est critique.
5. PLL : outil polyvalent :
La PLL est utilisee partout : synthese de frequence, demodulation, recuperation de synchronisation.
Applications pratiques
Radio FM/AM :
Les recepteurs radio classiques utilisent l'architecture superheterodyne enseignee dans ce cours.
Telecommunications sans fil :
GSM, WiFi, Bluetooth utilisent des architectures derivees (souvent avec conversion numerique apres la FI).
Instrumentation :
Analyseurs de spectre, generateurs de signaux emploient les techniques de modulation et melange.
Systemes embarques IoT :
Modules radio courte portee (LoRa, Sigfox, ZigBee) bases sur ces principes.
Retour d'experience
Cours riche et pratique :
Le cours couvre beaucoup d'aspects des systemes RF. Les TD permettent de consolider avec des calculs concrets.
Documents techniques utiles :
Les application notes (ADI, oscillateurs a quartz) apportent une vision industrielle et pratique.
Annales bien corrigees :
Les corrections detaillees des examens 2018-2019 et 2021-2022 aident beaucoup a la preparation.
Lien theorie/pratique :
Le cours fait bien le lien entre la theorie (analyse spectrale, conditions d'oscillation) et les circuits reels.
Limites et ouvertures
Limites du module :
- Peu de TP pratiques (mesures RF)
- Modulations numeriques non traitees (QPSK, QAM, etc.)
- Aspects propagation et antennes limites
Ouvertures vers :
- Communications numeriques : modulations numeriques, codage canal
- RF avancee : architectures Zero-IF, SDR (Software Defined Radio)
- Systemes MIMO : diversite spatiale, beamforming
- 5G/6G : bandes mmWave, massive MIMO
- IoT : protocoles radio basse consommation (LoRa, NB-IoT)
Evolution technologique
Tendances actuelles :
SDR (Software Defined Radio) :
Numerisation le plus tot possible dans la chaine, traitement en DSP. Flexibilite maximale.
Integration :
SoC RF integrant toute la chaine sur une puce (emetteur, recepteur, DSP, processeur).
Bandes mmWave :
5G utilise 24-40 GHz. Defis : attenuation, conception RF complexe.
Efficacite energetique :
IoT necessite des radios ultra-basse consommation (μW en veille, mW en emission).
Conseils pour reussir
1. Maitriser les bases :
Bien comprendre modulation AM/FM, spectres, bande passante avant d'attaquer les architectures.
2. Faire les TD :
Les 5 TD avec corrections sont essentiels. Refaire sans regarder les corrections.
3. Etudier les annales :
Les examens 2018-2019 et 2021-2022 donnent le format et le niveau attendus.
4. Comprendre les schemas :
Savoir lire et analyser les schemas blocs des chaines RF (identifier chaque fonction).
5. Ordre de grandeur :
Connaitre les valeurs typiques (FI, frequences radio, gains, NF).
Conclusion
Ce cours fournit une excellente base en architectures RF analogiques. Meme si la tendance est a la numerisation (SDR), la chaine RF analogique (antenne → LNA → melangeur → ADC) reste incontournable.
Complementarite :
Ce cours s'articule bien avec les cours de traitement numerique du signal et de communications numeriques pour une vision complete des telecommunications.
Pertinence professionnelle :
Les competences acquises sont directement applicables dans l'industrie des telecommunications, de l'IoT, et de l'instrumentation RF.
Message principal :
Comprendre les architectures RF analogiques est fondamental pour tout ingenieur en electronique et telecommunications. C'est la base sur laquelle reposent tous les systemes sans fil modernes.
Recommandations :
- Approfondir avec des simulations (ADS, LTspice pour RF)
- Pratiquer avec des kits RF (modules SDR, analyseurs de spectre)
- Explorer les datasheets de circuits integres RF (emetteurs-recepteurs)
- Se former aux communications numeriques en complement
Liens avec les autres cours :
- Electronique Fonctions Analogiques - S6 : AOPs, filtres
- Signal - S5 : transformee de Fourier, modulation
- Embedded IA for IoT - S9 : systemes communicants
Documents de Cours
Cours Complet
Cours complet sur les architectures RF : oscillateurs, PLL, melangeurs, modulation/demodulation AM et FM.
Modulation et Demodulation FM
Cours detaille sur la modulation de frequence : VCO, discriminateurs, detecteurs de phase et applications.
Recueil TDs
Ensemble des travaux diriges avec exercices sur oscillateurs, PLL, melangeurs et chaines RF completes.
Cours suivi en 2023-2024 a l'INSA Toulouse, Departement Genie Electrique et Informatique.
Analog Architectures for Information Transmission - Semester 7
Academic Year: 2023-2024
Semester: 7
Credits: 2.5 ECTS
Specialization: Analog and RF Electronics
PART A - General Module Presentation
Overview
This course covers analog architectures for information transmission, focusing on modulation/demodulation systems and radio-frequency (RF) transmit/receive chains. It covers analog modulation techniques (AM, FM), oscillators, multipliers, and receiver architectures.
Learning Objectives:
- Master analog modulation and demodulation techniques
- Understand RF chain architectures (transmission and reception)
- Design oscillators and frequency synthesis circuits
- Analyze transmission system performance (noise, linearity)
- Size circuits for radio applications
Position in the Curriculum
This module builds upon:
- Analog Function Electronics (S6): Op-amps, active filters
- Signal Processing (S5): modulation, Fourier transform
- Analog Circuits and Filters (S5): filters, impedance matching
It prepares for:
- Telecommunications: RF system design
- Communicating embedded systems: IoT, short-range radio
- RF Instrumentation: generators, analyzers
PART B - Personal Experience and Learning Context
Organization and Resources
The module was organized into lectures and tutorials:
Lectures (20h):
Covering the main topics:
- AM/FM modulation and demodulation
- Oscillators (theory and applications)
- Analog multipliers
- Receiver architectures (superheterodyne)
- Phase-locked loops (PLL)
Tutorials (16h):
5 tutorials with solutions available:
- TD1 to TD5: application exercises on modulation, oscillators, multipliers
Teaching materials:
- Main course document (ArchiUF_2022-2023.pdf)
- Oscillator course notes (Notes-cours-Theorie-Osc.pdf)
- Technical documents (ADI multipliers, quartz oscillators)
- Past exams 2018-2019, 2021-2022 with solutions
Resource Content
Available technical documents:
- Multipliers: ADI Multiplier Applications Guide, 1 to 4 quadrant multipliers
- Oscillators: theory, quartz oscillators (AN3208)
- FM Modulation: FM modulation and demodulation
- Detection: demodulation by envelope detection
- Specific circuits: RLC with negative resistance, threshold-free rectifier
Working Method
Theoretical course:
Many schematics and circuit analyses. Understanding the operating principles of modulators, demodulators, and oscillators.
Practical tutorials:
Performance calculations (modulation index, frequency deviation, gain, noise). Component sizing.
Past exams:
2018-2019 and 2021-2022 exams with solutions for practice.
Difficulties Encountered
Frequency analysis:
Understanding the spectrum of modulated signals (spectral lines, sidebands) requires good mastery of the Fourier transform.
Complex RF circuits:
Superheterodyne architectures with multiple frequency conversions are complex to grasp.
Oscillators:
Oscillation conditions (Barkhausen), frequency stability, and phase noise are subtle concepts.
PART C - Detailed Technical Aspects
1. Amplitude Modulation (AM)
Principle:
Vary the amplitude of a sinusoidal carrier signal according to the information signal (message).
Carrier signal: p(t) = Vp cos(2π fp t)
Modulating signal (message): m(t)
AM modulated signal: s(t) = Vp [1 + m × m(t)] cos(2π fp t)
where m is the modulation index (0 < m <= 1).
Modulation index:
m = (Vmax - Vmin) / (Vmax + Vmin)
- If m < 1: no overmodulation (good)
- If m > 1: overmodulation, distortion (bad)
AM signal spectrum:
For a sinusoidal modulating signal m(t) = cos(2π fm t):
s(t) = Vp cos(2π fp t) + (m Vp / 2) cos(2π (fp + fm) t) + (m Vp / 2) cos(2π (fp - fm) t)
Three components:
- Carrier at fp
- Upper sideband at fp + fm
- Lower sideband at fp - fm
Bandwidth:
BW = 2 × fm (max frequency of the message)
Efficiency:
The carrier contains no useful information. Useful power is only in the sidebands.
Energy efficiency = m² / (2 + m²)
For m = 1: efficiency = 33% (low!)
Variants:
| Type | Description | Advantage |
|---|---|---|
| Classic AM | Carrier + 2 sidebands | Simple to demodulate |
| DSB (Double Sideband) | 2 sidebands without carrier | Better efficiency |
| SSB (Single Sideband) | 1 sideband only | Bandwidth halved |
2. AM Demodulation
Envelope detection:
Simplest method to demodulate AM.
Circuit:
- Diode (rectification)
- Capacitor (filtering)
- Resistor (load)
Principle:
The diode rectifies the modulated signal. The capacitor follows the envelope (varying amplitude) of the signal.
Sizing:
The RC time constant must satisfy:
- 1/fp << RC (to filter the carrier)
- RC << 1/fm (to follow message variations)
Compromise: 1/fp << RC << 1/fm
Synchronous detection (coherent demodulation):
Multiply the received signal by a synchronous carrier (same frequency and phase).
Requires carrier recovery (PLL).
More complex but better quality (works for DSB and SSB).
3. Frequency Modulation (FM)
Principle:
Vary the carrier frequency proportionally to the modulating signal.
Instantaneous frequency: f(t) = fp + kf × m(t)
where kf is the modulator sensitivity (Hz/V).
Frequency deviation:
Δf = kf × Vm (max amplitude of the message)
Modulation index:
β = Δf / fm
where fm is the message frequency.
FM signal spectrum:
The spectrum contains an infinite number of spectral lines (theoretically) spaced by fm.
Line amplitudes given by Bessel functions Jn(β).
Bandwidth (Carson's rule):
BW = 2 (Δf + fm) = 2 fm (β + 1)
For β >> 1 (wideband): BW ≈ 2 Δf
For β << 1 (narrowband): BW ≈ 2 fm
Wideband FM vs narrowband FM:
| Type | β | Bandwidth | Application |
|---|---|---|---|
| NBFM | < 0.5 | 2 fm | Professional radio communications |
| WBFM | > 1 | 2 Δf | FM broadcast radio (88-108 MHz) |
Advantages of FM:
- Immunity to amplitude noise
- Better audio quality
- Capture effect (strong signal captures the receiver)
Disadvantage:
Wider bandwidth than AM.
4. FM Demodulation
Frequency discriminator:
Converts frequency variations into amplitude variations, then envelope detection.
Principle:
- Differentiator circuit or phase-shifting network
- Transforms FM into AM
- Classic envelope detection
PLL demodulator:
Uses a phase-locked loop (PLL) that tracks the instantaneous frequency.
The VCO control voltage (in the PLL) is proportional to the input frequency: this is the demodulated signal.
Advantage:
- Better linearity
- Less sensitive to noise
5. Oscillators
Definition:
Circuit that generates a periodic signal (sinusoidal or square) without an input signal.
Oscillation condition (Barkhausen criterion):
For a feedback oscillator (amplifier + feedback network):
Open loop: H(jω) = A(jω) × Β(jω)
Conditions for oscillation at ω0:
- |H(jω0)| = 1 (loop gain = 1)
- arg(H(jω0)) = 0° or 360° (loop phase shift multiple of 360°)
Oscillation startup:
In practice, |H| is set slightly > 1 at startup so that oscillations begin (from noise).
Then an amplitude limiting mechanism (saturation, compression) stabilizes the amplitude.
Types of oscillators:
RC Oscillators:
Phase-shift network (3 RC cells) + amplifier.
Frequency: f ≈ 1 / (2π RC √6)
Advantage: simple components
Disadvantage: average stability
LC Oscillators:
Uses a resonant LC circuit to set the frequency.
Frequency: f0 = 1 / (2π √(LC))
Colpitts Oscillator:
LC resonator with capacitive tap (2 series capacitors).
Widely used in RF for its stability.
Clapp Oscillator:
Colpitts variant with series capacitor in the inductor.
Better frequency stability.
Crystal Oscillators:
Uses a quartz crystal as a resonator.
Advantages:
- Very high frequency stability (ppm)
- Very high quality factor Q (10^4 to 10^6)
Applications:
- Clocks (watches, microcontrollers)
- Precise time bases
- Frequency references
Standard frequencies:
- 32.768 kHz (timekeeping)
- 10 MHz (laboratory reference)
- A few MHz to tens of MHz (electronics)
6. Analog Multipliers
Definition:
Circuit that performs multiplication of two signals: Vout = k × V1 × V2
Applications:
| Application | Description |
|---|---|
| Modulation | Multiply carrier × message |
| Demodulation | Multiply received signal × local carrier |
| Mixer | Frequency transposition |
| Phase detector | Phase comparison in PLL |
| Automatic gain control | Multiplication by control voltage |
| Power | V × I calculation |
Types of multipliers:
4-quadrant multiplier:
V1 and V2 can be positive or negative.
Full multiplication: Vout = k V1 V2
2-quadrant multiplier:
One bipolar signal, the other unipolar.
1-quadrant multiplier:
Both signals unipolar (positive only).
Example circuit: Gilbert cell:
Transistor circuit (BJT or MOS) that performs multiplication.
Basis for many integrated multipliers (AD633, AD834, etc.).
Modulation by multiplier:
AM: s(t) = [Vdc + m(t)] × cos(ωp t)
The modulating signal is added to a DC component before multiplication with the carrier.
Frequency transposition (mixer):
Multiply two sinusoidal signals:
V1 = A cos(ω1 t)
V2 = B cos(ω2 t)
Result:
Vout = (AB/2) [cos((ω1 - ω2) t) + cos((ω1 + ω2) t)]
Two new frequencies: sum and difference.
Application: frequency conversion in receivers (superheterodyne).
7. Receiver Architectures
Superheterodyne receiver:
Classic architecture used in the majority of radio receivers.
Principle:
Transpose the received RF signal to a fixed intermediate frequency (IF) where processing is easier.
Functional blocks:
- Antenna: RF signal reception
- RF Filter: band selection (rejection of unwanted frequencies)
- RF Amplifier (LNA): low-noise amplification
- Mixer: RF → IF transposition
- Local Oscillator (LO): transposition frequency generation
- IF Filter: channel selectivity (narrow bandwidth)
- IF Amplifier: main receiver gain
- Demodulator: information signal extraction
- Audio/Video Amplifier: demodulated signal amplification
Intermediate frequency:
f_IF = |f_RF - f_LO|
Typical IF choices:
- AM broadcast: 455 kHz or 10.7 MHz
- FM broadcast: 10.7 MHz
- TV: 36-45 MHz
Superheterodyne advantages:
- High selectivity (fixed IF filter, well optimized)
- High stable gain (amplification at fixed IF)
- Easy tuning (only vary f_LO)
Image problem:
Two RF frequencies can produce the same IF:
- f_RF = f_LO + f_IF (desired signal)
- f_image = f_LO - f_IF (unwanted image)
The image frequency is 2 × f_IF from the desired signal.
Solution:
RF filter that rejects the image frequency before the mixer.
Dual frequency conversion:
To improve image rejection and selectivity, two successive IFs can be used.
RF → IF1 (high) → IF2 (low) → demodulation
Example: IF1 = 10.7 MHz, IF2 = 455 kHz
8. Phase-Locked Loop (PLL)
Principle:
Feedback system that locks the phase (and therefore frequency) of a local oscillator to a reference signal.
Blocks:
- Phase comparator: compares the phase of the input signal and the VCO
- Loop filter: low-pass filter (integrator)
- VCO (Voltage Controlled Oscillator): voltage-controlled oscillator
Operation:
- If VCO phase lags: control voltage increases → VCO frequency increases
- If VCO phase leads: control voltage decreases → VCO frequency decreases
In locked state:
The VCO exactly follows the input frequency and phase.
Applications:
| Application | Description |
|---|---|
| Frequency synthesis | Generate precise and programmable frequencies |
| FM demodulation | The VCO control voltage is the demodulated signal |
| Carrier recovery | Extract the carrier from a modulated signal |
| Clock recovery | Synchronization in digital transmissions |
| Frequency multiplication | With divider in the loop |
Frequency synthesizer:
PLL with frequency divider in the feedback loop.
f_VCO = N × f_ref
By varying N (programmable divider), different frequencies that are multiples of f_ref are generated.
Example:
- f_ref = 10 kHz (stable quartz)
- N variable from 8800 to 10800
- f_VCO variable from 88 MHz to 108 MHz (FM band)
Resolution: 10 kHz (channel spacing)
9. Specific Circuits
Threshold-free rectifier:
Rectifier using an op-amp to compensate the diode voltage drop (0.6-0.7 V).
Allows rectification of low-amplitude signals (a few mV).
Circuit:
- Op-amp in closed loop with diode
- Feedback compensates the diode threshold
Negative resistance:
Active circuit (with op-amp or transistor) that presents a negative resistance.
Application:
Compensate losses in an RLC circuit to maintain oscillations.
RLC circuit + negative resistance = oscillator.
Voltage-to-frequency converter (VCO):
Circuit whose output frequency is proportional to the input voltage.
f_out = k × V_in
Types:
- LC VCO (variable inductance-capacitance, varicap)
- RC VCO (multivibrator with variable charge time)
- Integrated VCO (4046, 566, etc.)
Applications:
- FM modulation (V_in = modulating signal)
- PLL (controlled oscillator)
- Analog-to-digital conversion
10. Performance and Specifications
Sensitivity:
Minimum detectable signal by the receiver.
Limited by noise (thermal + component).
Sensitivity (dBm) = Noise floor + minimum SNR
Noise Figure (NF):
Measures the signal-to-noise ratio degradation due to the receiver.
NF (dB) = SNR_input (dB) - SNR_output (dB)
For cascaded stages (Friis formula):
NF_total = NF1 + (NF2 - 1)/G1 + (NF3 - 1)/(G1 × G2) + ...
Importance of the first stage (LNA): must have low NF and high gain.
Selectivity:
Ability to separate the desired channel from adjacent channels.
Defined by the IF filter bandwidth.
Dynamic range:
Range between minimum signal (sensitivity) and maximum signal (saturation/intermodulation).
Gain:
Total receiver amplification.
Typically 60-120 dB, distributed across several stages.
Automatic Gain Control (AGC):
Circuit that automatically adjusts gain to maintain a constant output level despite input signal variations.
Prevents saturation on strong signals and maintains SNR on weak signals.
PART D - Reflective Analysis and Perspectives
Skills Acquired
RF chain design:
Understanding complete transmit and receive architectures. Ability to size each stage and analyze overall performance.
Modulation/demodulation:
Mastery of AM and FM techniques, spectrum calculations, parameter selection (modulation index, deviation).
RF circuits:
Design of oscillators, multipliers, mixers. Understanding oscillation conditions and stability.
Key Takeaways
1. Superheterodyne = dominant architecture:
IF transposition has been the standard solution for decades. Simple, efficient, proven.
2. Bandwidth/quality trade-off:
AM: narrow bandwidth but average quality. FM: wide bandwidth but better quality and noise immunity.
3. Oscillators: stability is crucial:
Oscillator frequency stability determines system quality. Crystal for high stability.
4. Noise: fundamental limitation:
Thermal noise and component noise limit sensitivity. The first stage (LNA) is critical.
5. PLL: versatile tool:
PLL is used everywhere: frequency synthesis, demodulation, synchronization recovery.
Practical Applications
FM/AM Radio:
Classic radio receivers use the superheterodyne architecture taught in this course.
Wireless telecommunications:
GSM, WiFi, Bluetooth use derived architectures (often with digital conversion after the IF).
Instrumentation:
Spectrum analyzers, signal generators employ modulation and mixing techniques.
IoT embedded systems:
Short-range radio modules (LoRa, Sigfox, ZigBee) based on these principles.
Feedback
Rich and practical course:
The course covers many aspects of RF systems. Tutorials help consolidate with concrete calculations.
Useful technical documents:
Application notes (ADI, quartz oscillators) provide an industrial and practical perspective.
Well-corrected past exams:
Detailed solutions for the 2018-2019 and 2021-2022 exams greatly help with preparation.
Theory/practice link:
The course effectively connects theory (spectral analysis, oscillation conditions) with real circuits.
Limitations and Openings
Module limitations:
- Few practical labs (RF measurements)
- Digital modulations not covered (QPSK, QAM, etc.)
- Limited propagation and antenna aspects
Openings towards:
- Digital communications: digital modulations, channel coding
- Advanced RF: Zero-IF architectures, SDR (Software Defined Radio)
- MIMO systems: spatial diversity, beamforming
- 5G/6G: mmWave bands, massive MIMO
- IoT: low-power radio protocols (LoRa, NB-IoT)
Technological Evolution
Current trends:
SDR (Software Defined Radio):
Digitization as early as possible in the chain, DSP processing. Maximum flexibility.
Integration:
RF SoC integrating the entire chain on a chip (transmitter, receiver, DSP, processor).
mmWave bands:
5G uses 24-40 GHz. Challenges: attenuation, complex RF design.
Energy efficiency:
IoT requires ultra-low power radios (μW in sleep, mW in transmission).
Tips for Success
1. Master the basics:
Thoroughly understand AM/FM modulation, spectra, bandwidth before tackling architectures.
2. Do the tutorials:
The 5 tutorials with solutions are essential. Redo them without looking at the solutions.
3. Study past exams:
The 2018-2019 and 2021-2022 exams show the expected format and level.
4. Understand the schematics:
Know how to read and analyze RF chain block diagrams (identify each function).
5. Orders of magnitude:
Know typical values (IF, radio frequencies, gains, NF).
Conclusion
This course provides an excellent foundation in analog RF architectures. Even though the trend is towards digitization (SDR), the analog RF chain (antenna → LNA → mixer → ADC) remains essential.
Complementarity:
This course integrates well with digital signal processing and digital communications courses for a complete view of telecommunications.
Professional relevance:
The skills acquired are directly applicable in the telecommunications, IoT, and RF instrumentation industries.
Main message:
Understanding analog RF architectures is fundamental for any electronics and telecommunications engineer. It is the foundation on which all modern wireless systems are built.
Recommendations:
- Deepen knowledge with simulations (ADS, LTspice for RF)
- Practice with RF kits (SDR modules, spectrum analyzers)
- Explore RF integrated circuit datasheets (transceivers)
- Train in digital communications as a complement
Links with other courses:
- Analog Function Electronics - S6: Op-amps, filters
- Signal Processing - S5: Fourier transform, modulation
- Embedded AI for IoT - S9: communicating systems
Course Documents
Complete Course
Complete course on RF architectures: oscillators, PLL, mixers, AM and FM modulation/demodulation.
FM Modulation and Demodulation
Detailed course on frequency modulation: VCO, discriminators, phase detectors and applications.
Tutorial Collection
Complete set of tutorials with exercises on oscillators, PLL, mixers and complete RF chains.
Course taken in 2023-2024 at INSA Toulouse, Department of Electrical Engineering and Computer Science.