IPV6 for IoT - Practice lab

(Part 1 : IPv6 basics)

Objectives: To practice IPv6 basics (auto-configuration, router advertisements, multicasting,
routing) and assess from the experiments some of the benefits and the challenges of using
IPv6 in an loT context.

1.Network settings

Figure 1 describes the network that we consider for this lab. It is composed of a set of
end-devices (namely, the end-hosts of room GEI-101) connected to each other via a
physical loT network (emulated here by an Ethernet switch, which can be seen as a radio
gateway) and to a Network Gateway (or server, represented here by a Cisco router). The
network gateway is then connected to an application server.

End loT acess Network Application
devi network
evices Gateway server
===
2023:::0/64

2022:::0/64

Figure 1.

2.Preliminaries

This first step is to connect the “eth0” of your end-device to the switch, set it up and verify
that it can be connected to an IPv6 network by checking the “/proc/net/if_inet6”
configuration file.

bashtt ifconfig ethO up

3.Auto-configuration of Link-local addresses

1. First, ensure that the network configuration of network interface “eth0” is
blank.

bash# ifconfig ethO down
bash# ifconfig ethO

2. Without setting any IP address, turn the network interface “eth0” up as follows

bashtt ifconfig ethO up
alternatively
bash# ip link set dev eth0 up

check whether “eth0” gets assigned an IPv6 address with

bash# ifconfig ethO
bashit ip -6 addr Is dev eth0

If so, what type of address is it ? and how was it assigned to ethO ?

You can also check the subscription of the end-host to these multicast groups
with

bashitnetstat -ng

3. In order to study IPv6 procedures when activating interface ethO. Launch
tcpdump/“wireshark” by capturing traffic on “eth0” and filtering on IPv6

bash#tcpdump -i ethO -n ip6

Turn ethO0 down, then up while keeping tcpdump running. Analyze the
captured data frames and try to identify DAD (Duplicate Address Detection)
procedures. Pay attention to the destination addresses that are in use, which
are multicast addresses.

4. While still sniffing with wireshark, using the tool “ping6” , try to ping one of
your neighbors’ IPv6 address. Did it work ? If not, what did you do wrong ?
Once you succeed, test the following command

bash#ip -6 neigh show

To what table from the IPv4 world, this table corresponds to? Identify how
IPv6 to MAC address resolution is performed ? Check the destination IPv6
addresses that were used for the resolution ? What is the rationale of using
these multicast addresses?

5. While still capturing the traffic, set a new link-local IPv6 address to your node
and set it, on purpose, to the IP address of one of your neighbors as follows
(you can even ask your neighbour to set an “easy-to-remember’ new
link-local address (i.e. FE80::1/64) and then set this address to your
interface).

bashtt ifconfig eth0 inet6 add <new_ipv6>/<mask>
or alternatively
bashi# ip address add <new_ipv6>/<mask> dev eth0

Analyze the captured data frames and check the resulting network
configuration of ethO

bashit ip -6 addr Is dev eth0

Did the DAD succeed ? Confirm it by trying to ping the address of your
neighbor.

Remove the duplicate address and check ethO network configuration.

4.Auto-configuration of unicast global addresses

1. Before configuring the router, check the presence of “router-solicitation” icmpv6
packets sent periodically by your node ?

2. IPv6 forwarding needs to be enabled on the network gateway as follows

cisco(config)# ipv6 unicast-routing

3. Configure the IP address of gateway’s left-hand network interface as follows

cisco(config)# configure terminal
cisco(config)# interface <ifname>
cisco(config-if)# ipv6 enable
cisco(config-f)# ipv6 nd ra interval 30 (set ra
period:30s, not mandatory)

cisco(config-f)# no shutdown

the IPv6 configuration of router’s interface can be checked as follows

cisco# show ipv6 interface <ifname>

4. Check the transmission of “router-advertisement” from the router by capturing the
traffic on your node interface?

5. Check that end-hosts are allowed to derive their network configuration from the
“router-advertisements” sent by the router by :

bash# cat /proc/sys/net/ipv6/conf/ethO/accept ra

the output should be 1.

6. Also, Have a look at the configuration of your node (IPv6 addresses and routing
table).

bash# ifconfig eth0
bash# route -A inet6
alternatively

bash# ip -6 route

Did the “router-advertisement’(s) have an impact on the networking configuration of
your node ?

7. Configure the IP address of gateway’s left-hand network interface as follows

cisco(config)# interface <ifname>
cisco(config-f)# ipv6 address <ip>/<mask>
cisco(config-if)# no ipv6 nd ra suppress all

8. Check again the network configuration on end devices, including the end hosts’
routing table?

9. Check that you can ping the public IPv6 address of the router and your neighbors?

5.end-to-end IPv6 connectivity & data
distribution with MQTT

Last step is to establish the end-to-end IPv6 connectivity with the application server and set
up MQTT. To that end, each row of three end-hosts sets up the following topology composed
of two sensors, one application server and an Ipv6 router in between.

End loT acess K Application
devices network Networ server
Gateway _
&
) 1 .23
2023:::0/64

2022:::0/64

1. set up the end-to-end connectivity with the application server.
2. Any application or middleware supporting IPv6 can leverage on this Pv6 connectivity.

Below, we consider using MQTT. The mosquitto MQTT broker as well as its publisher
and subscriber clients are installed on all end-devices. On the application server, allow
anonymous access to the broker as well as IPv4 and IPv6 accesses, and the broker port
number by updating the configuration file of the broker, i.e. “/etc/mosquitto/mosquitto.conf”
as follows

allow_anonymous true
listener 1883

turn the MQTT broker on, with

bash# service mosquitto start

Then, check that it is running by verifying that the broker is listening on the default
port number 1883

bash# netstat -an | grep 1883

3. you can now use the “mosquitto_sub” and “mosquitto_pub” tools to distribute data
between “topic publishers” and “topic consumers” as follows

e when subscribing to a topic :

bash# mosquitto_sub -h <IP address of broker> -t
<topic identifier>

e when publishing an instance :

bash# mosquitto_pub -h <IP address of broker> -t
<topic identifier> -m <produced instance>

6. Takeaways regarding the benefits and
challenges of adopting IPv6 for loT

Is the address space suited for loT ?
2. What about human intervention on network configuration of end-devices or things ?

3. What are the requirements induced by IPv6 on the underlying physical network ?
Discuss whether these requirements are compatible with 1oT networks ?

-_—

IPV6 for IoT - Practice lab

(Part 2 : 6LowPAN basics)

Objectives: To practice some aspects of 6LowPAN (mainly, its header compression
mechanism) and RPL routing protocol.

1.Network settings

A défaut d’interfaces IEEE 802.15.4 disponibles au sein du département, nous reposerons
sur I'’émulateur de réseau mininet [1] et plus spécifiquement sur une branche un peu moins
connue mininet-wifi [2]. Cette version émule partiellement la pile protocolaire 802.15.4 et
certains aspects de 6LowPAN dont la compression d’en-téte IPv6.

Le réseau qui sera émulé est présenté a la figure 1. Dans un premier temps, le protocole de
routage RPL sera désactivé pour se concentrer sur la compression d’en-téte 6LowPAN.
Dans cette premiére étape, seules les adresses IPv6 link-local sont en place. Les adresses

IPv6 privées sont configurées lorsque le protocole de routage RPL sera activé dans la
deuxiéme étape.

) sensor 1
— ‘

sensor 3

sensor 4

Figure 1. Topologie considérée

sensor 2

2.Preliminaries

Mininet-wifi repose sur une implémentation du protocole de routage RPL dépréciée. Nous
utiliserons donc une image de VM préfabriquée qui inclut tous les outils nécessaires dont
'implémentation du protocole RPL.

Connectez vous sous Windows et récupérez I'image de la VM mininet-wifi depuis le lien
suivant : Image VM (La taille de 'image est malheureusement importante, le mieux serait de

l'installer en local sur la machine de travail ..)

Lancer virtualbox et importez I'image téléchargée (le mot de passe est : wifi).

https://drive.google.com/file/d/1R8n4thPwV2krFa6WNP0Eh05ZHZEdhw4W/view?usp=sharing

Lancez mininet-wifi avec la topologie suscitée

bash# sudo python examples/6LowPan.py

A partir de l'invite de commande mininet-Wifi, vous pouvez utiliser les utilitaires classiques
en précédant la commande par le nom de la station. Vous trouverez ci-aprés qcq exemples

mininet-wifi> nodes # liste des noeuds du réseau émulé

mininet-wifi>sensor1 ifconfig # lance la commande ifconfig sur le noeuds sensor1
mininet-wifi>sensor1 xterm & # ouvre un invite de commande sur sensor1
mininet-wifi>sensor1 ping -c1 <@IPv6> # émission depuis sensor1 d’un seul ping
mininet-wifi>sensor1 route -A inet6 # affiche table de routage IPv6 senort

mininet-wifi>sensor1 iwpan dev sensor1-wpan0 info # récupére les infos relative
a l'interface wpan dans sensor1 (pour plus d’option : sensorl iwpan --help)

A noter qu’il est recommandé de lancer une commande de réinitialisation entre deux
simulations successives

bash# mn -c

Vous pouvez rapidement parcourir le fichier “examples/6LowPan.py” pour retrouver la
topologie réseau de la figure 1.

3. 6LowPAN Header compression

1. Déterminez le plan d’adressage du réseau émulé (adresses IPv6 des différentes
noeuds) ?

2. Testez la connectivité IPv6 entre les différents noeuds ? Correspond elle a ce qui est
attendu ?

3. Ouvrez un “xterm” sur I'un des noeuds et lancez wireshark et capturez le trafic sur
linterface “sensor-wpanQ” puis lancer un ping avec un noeud voisin. Analysez
I'encapsulation 6LowPAN pour les trames suivantes :

a. “router-sollicitation” qui sont typiquement envoyés en multicast !
b. “neighbor Advertisement”, “icmpv6-echo-request” ou “icmpv6-echo-response”
qui sont envoyés en unicast.
En analysant le PDU 6LowPAN, identifiez les modes utilisés pour compresser les

différents champs de I'en-téte IPVv6.

4. Aurait-il été possible de compresser davantage l'en-téte ? Si oui, sous quelle
condition ?

4. RPL

Lancez mininet-wifi avec la topologie suscitée avec 'option “-r” qui permet d’activer RPL

bashi# sudo python examples/6LowPan.py -r

1. Déterminez le plan d’adressage du réseau émulé (adresses IPv6 des différentes
noeuds) et notamment le plan relatif aux adresses privées ? pourquoi ont-elles été
configurées/ajoutées ?

2. Testez la connectivité entre les différents noeuds et constatez ce qu’a permis RPL?

3. En consultant le fichier “examples/6LowPAN.py”, quel est le noeud racine du DODAG
RPL?

4. Consultez les tables de routage des différents noeuds et retrouvez le fonctionnement
du protocole RPL et notamment son adéquation au trafic multipoint a point ?

5. Lancez wireshark sur le noeud sensor1 et capturez le trafic sur l'interface “wpan0”.
Retrouvez le fonctionnement du protocole RPL ?

6. En continuant la capture de trafic au niveau du “sensor?”, lancez un ping depuis
“sensor4” a destination de “sensor2’. Analysez le trafic de routage généré ?

5.Conclusions

1. En quoi consiste la fonction de compression d’entéte 6LowPAN ?

2. parmi les différentes fonctionnalités implémentées et assurées par 6LowPAN,
lesquelles vous paraissent les plus cruciales pour permettre I'utilisation d’'une pile
protocolaire basée IPv6 sur un réseau physique IoT contraint ?

3. En vous référant a ce que vous avez observé, pourquoi est ce que le protocole de
routage RPL est adapté a du trafic multi-point a point ?

6. Annexe : version dockerisée de Mininet-wifi

Afin de ne pas alourdir les images Ubuntu chargée en séance, une version conteuneurisé de
Mininet-Wifi peut étre utilisée et complétée par l'installation de qcq outils supplémentaires.
Malheureusement, ce conteneur ne dispose pas de limplémentation du protocole de
routage RPL.

Démarrez votre machine en sélectionnant 'image TP-GEI.

Clonez le dépd6t Mininet-Wifi comme suit

bash# git clone https://github.com/intrig-unicamp/mininet-wifi

Un dockerfile est fourni afin de générer le conteneur. Editez-le et modifiez et rajouter I'option
-6 pour y inclure I'émulation des noeuds IEEE802.15.4 comme suit

bash# cd mininet-wifi
bash# nano Dockerfile

Rajouter I'option “6” a la fin de la ligne “RUN util/install.sh -WInfv” comme suit
“RUN util/install.sh -WInfv6”

créez I'image correspondante a I’émulateur mininet-wifi

bash# docker build -t mn-wifi:v1 .

Vous pouvez vérifier la création de 'image

bash# docker images

Instancier un conteneur mininet-wifi comme suit

bash# docker run -it --rm --privileged --env="DISPLAY"
--env="QT_X11_NO_MITSHM=1" -v /tmp/.X11-unix:/tmp/.X11-unix:rw --net
host -v /sys/:/sys -v /lib/modules:/lib/modules -v
/sys/kernel/debug:/sys/kernel/debug -v /var/run/netns:/var/run/netns mn-wifi:v1

sur le terminal du conteneur mininet-wifi, installez les utilitaires ping et wireshark (répondez
par I'affirmative aux questions qui vous sont posées)

bash# apt update
bash# apt install iputils-ping
bash# apt install wireshark

