INSTITUT NATIONAL ’j.'.___
‘ DES SCIENCES &F
I N A APPLIQUEES V7t
TDULUUSE FADVATIVE BHART BYRTENE

Middleware For loT
Report

Cédric Chanfreau
Samia Boukouiss

5A ISS
2024 - 2025

TP 1 & 2 : Middleware For the loT

Introduction :

The goal of this laboratory is to explore the features and applications of the MQTT protocol
in the context of IoT. First, we will provide a concise overview of MQTT's main
characteristics. Next, we will install the necessary software on our laptops to enable the use
of MQTT. Finally, we will develop a simple application using an IoT device (ESP8266) that
communicates with a server on our laptop via the MQTT protocol.

1. MQTT :

- What is the typical architecture of an loT system based on the MQTT protocol?

The standard architecture of an loT system utilizing the MQTT protocol comprises multiple
devices (loT nodes) that interact by publishing and subscribing to topics via an MQTT
broker. Devices exchange information by sending messages to specific topics, which other
devices subscribe to in order to receive the transmitted data. The MQTT broker serves as a
central mediator, enabling seamless communication between devices.

- What is the IP protocol under MQTT? What does it mean in terms of bandwidth
usage, type of communication, etc ?

MQTT functions on the TCP/IP protocol, utilizing the Internet Protocol suite for
communication. Its lightweight design ensures minimal bandwidth usage, making it
well-suited for resource-constrained networks and devices. Leveraging a publish/subscribe
model, MQTT enables efficient device communication with minimal overhead.

- What are the different versions of MQTT?

MQTT has three primary versions: MQTT v3.1, MQTT v3.1.1, and MQTT v5. Each
successive version brings enhancements and new features, with version 5 being the most
recent and comprehensive.

- What kind of security/authentication/encryption are used in MQTT?

MQTT incorporates several security features, such as username/password authentication
and Transport Layer Security (TLS) encryption. These measures ensure secure
communication between devices and the broker, protecting against unauthorized access and
eavesdropping.

- Suppose you have devices that include one button, one light and luminosity sensor.
You would like to create a smart system for you house with this behavior:
- you would like to be able to switch on the light manually with the button
- the light is automatically switched on when the luminosity is under a certain
value
What different topics will be necessary to get this behavior and what will the
connection be in terms of publishing or subscribing?

To implement this behavior with MQTT, the setup involves two topics:

- Topic for manual control ("home/light/control”): Used by devices to publish
messages for manually controlling the light.

- Topic for luminosity status ("home/light/luminosity"): Used by the luminosity sensor
to publish its readings.

Three subscriptions :

- Button: Subscribes to "home/light/control”
- Light: Subscribes to "home/light/control” and "home/light/luminosity"
- Luminosity Sensor: Subscribes to "home/light/luminosity"”

Three connections :

- The button publishes messages to "home/light/control” when pressed.

- The luminosity sensor publishes its readings to "home/light/luminosity".

- The light listens to both topics, adapting its behavior based on the received
messages, whether for manual control or automatic adjustments informed by
luminosity values.

2. Install and Test the broker

To begin, we downloaded and installed the Mosquitto broker with the following command
line: apt install mosquitto. This broker, maintained by the Eclipse, is an open-source
implementation of the MQTT protocol, available for different operating systems

Then we started the Mosquitto broker by running the following command in the terminal.

root@insa-21124: fetc/mosquitto

root@insa-21124:/etc/mosquitto# sudo service mosguitto start
root@insa-21124: /etc/mosquitto# sudo service mosquitto status
mosquitto.service - Mosquitto MQTT Broker
Loaded: loaded (/lib/systemd/system/mosquitto.service; enabled; vendor pre!
Active: since Fri 2024-11-22 13:38:16 UTC; 2min 42s ago
Docs: man:mosquitto.conf(5)
man:mosquitto(8)
Process: 4012 ExecStartPre=/bin/mkdir -m 740 -p /var/log/mosquitto (code-exd
Process: 4013 ExecStartPre=/bin/chown mosquitte /var/log/mosquitto (co xe
Process: 4014 ExecStartPre=/bin/mkdir -m 746 -p /run/mosquitto (code=exitedg
Process: 4815 ExecStartPre=/bin/chown mosquitto /run/mosquitto (code=exitedg
Main PID: 4016 (mosquitto)
Tasks: 1 (limit: 76158)
Memory: 1.2M
CPU: 81ms
CGroup: [system.slice/mosquitto.service
4016 fusr/sbin/mosquitto -c fetc/mosquitto/mosquitto.conf

. 22 13:38:16 insa-21124 systemd[1]: Starting Mosquitto MQTT Broker...
. 22 13:38:16 insa-21124 systemd[1]: Started Mosquitto MQTT Broker.
lines 1-18/18 (END)f

Once the broker was running, we tested the communication using the publish and subscribe
commands.

In the following example, we used mosquitto_pub to publish a message to the topic /insa/test
and mosquitto_sub to subscribe to that topic and receive the corresponding messages.

root@insa-21124: fetc/mosquitto

root@insa-21124: /etc/mosquitto# mosquitto_sub -h localhost -p 1883 -t /insa/test
test123

root@insa-21124: fetc/mosquitto

root@insa-21124:/etc/mosquitto# mosquitto_pub -h localhost -p 1883 -t /insa/test -m testi23
root@insa-21124: /etc/mosquitto#

These tests allowed us to validate that the communication between the client and the broker
was working correctly.

3. Creation of an loT device with the nodeMCU board that uses MQTT communication:

a) Give the main characteristics of nodeMCU board in term of communication,
programming language, Inputs/outputs capabilities

Communication :

- Wi-Fi: Supports wireless communication, ideal for loT applications.
- UART: Enables serial communication for debugging and device interfacing.

Programming Language :
- CIC++: Programmable using the Arduino IDE.
Inputs/Outputs :

- GPIO Pins: Provides digital input/output functionality.

- Analog Input: Supports a single analog input pin for sensor readings.

- PWM Support: Allows Pulse Width Modulation for applications like LED dimming.
- 12C and SPI: Facilitates communication with peripheral devices like sensors.

b) Arduino IDE Installation

For the development with microcontrollers like the esp8266, we had to download Arduino
IDE and set up the environment with the command: sudo apt install arduino

c) Add the board NodeMCU

In Arduino IDE, we added support for the NodeMCU board by including the link to the
ESP8266 board manager in the preferences, then installed the board via the built-in
manager.

ConnectEsp8266WiFiClient | Arduino 1.8.19

Eichier Edition Croquis Outils Aide

ConnectEsp8266WiFiClient

istributed
accompar

er the MIT Liced
) file LICENSE

httg pen:

Gestionnaire de carte
Type | Tout

v | espiz
esp8266

by ESP8266 Community version 3.1.2 INSTALLED
Cartes incluses dans ce paquet:

Generic ESPB266 Module, Generic ESP8285 Module, Lifely Agrumino Lemon va, ESPDUINo (ESP-13 Module), Adafrut Feather HUZZAH ESP8266,
Kit 8, Invent One, XinaBox CWOL, ESPresso Lite 1.0, ESPresso Lite 2.0, Phoenix 1.0, Phoenix 2.0, NodeMCU 0.9 (ESP-12 Module), NodeMCU 1.0
(ESP-12E Module), Olimex MOD-WIFI-ESPB266(-DEV), SparkFun ESP8266 Thing, SparkFun ESPB266 Thing Dev, SparkFun Blynk Board, SweetPea
ESP-210, LOLIN(WEMOS) D1 R2 & min, LOLIN(WEMOS) D1 ESP-WROOM-02, LOLIN(WEMOS) D1 mini (clone), LOLINCWEMOS) D1 mini Pro, LOLIN(WEMO
mini Lite, LOLIN(WeMos) D1 RL, ESPino (ESP-12 Module), ThaiEasyElec's ESPino, Wifinfo, Arduino, 4D Systems gend IoD Range, Digistump Ok,
‘WiFiduino, Amperka WiFi Slot, Seeed Wio Link, ESPectro Core, Schirmilabs Eduino WiFi, ITEAD Sonoff, DOIT ESP-Mx Devkit (ESP!
Qnline Help.

More Info

Sélectionner une versi, -

Supprit

d) Add the library ArduinoMqtt

Then we searched for and installed the ArduinoMaqtt library developed by

Kovalenko via the library manager

ConnectEspB266WIFiClient

Type | Tout

ArduinoMqttClient
by Ardui

More info

ArduinoMqtt

~ | Sujet | Tout

ConnectEsp8266WiFiClient | Arduino 1.8.19

Fichier Edition Croquis Outils Aide

Gestionnaire de bibliothéque

~ || ArduinoMqtt

[BETA] Allows you to send and receive MQTT messages using Arduino.

@t
MQTT Client librar

More info

Sélectionner une versi -

DT

f
C/C++ Eclipse Paho Y GrrPadear Torary. It supports MQTT 3. and 3 111 GoS 0.1 &

n the Edipse Paho profect, The brary buncles synchonous C-+ MQTT Client implementation wi

staller

e) Application Example

Oleg

For this step we used the PubSubClient library by installing it via the Arduino Library
Manager. We then opened the mqtt_esp8266 example provided with the library. This code
allows us to establish a connection with the MQTT broker, send messages and read

received ones.

Eichier Edition Croquis Outils Aide

matt_esps266

#include <ESP8266I >
Finclude PubSubClient >

word
nst char* matt_server

232

WJFJ(leul espClient;
PubSubClient cli ((ESDC1lent)
gned ong lastMsg =

Jdatine MG BUFFER SIZE (59)

char msq[MSG_BUFFER_SIZE] ;

int value =

void setup_wifi() {

delay(10) ;

// We start by connec
Serial.println();
Serial.print("Connecting to ");
Serial.printin(ssid);

WiFi.mode (WIFT_STA);
WiFi.begin(ssid, password);

while (WiFi.status() != WL_CONNECTED) {
ielay (500) ;
Serial.print(

randonSeed(m:

matt_esps266 | Arduino 1.8.19

// Update these with values suitable for your network

ting to a WiFL network

f) Add publish/subscribe behavior

Using the same mqtt_esp8266 example, we modified and tested the publishing and
subscribing functions. The ESP8266 was configured to publish messages to “aa” topic and
the laptop was subscribed to this topic to receive messages in return. These interactions
were validated via the serial monitor and the mosquitto_sub commands.

WiFi connected

unsigned long now = millis(); IP address:
. 10.9.1.205
if (HDW - -LaStMSg = 20@0) { Attempting MQTT conmnection...connected
lastMsg = now; Publish message: hello world #1
. Publish message: hello world #2
++Va-lLue’ Publish message: hello world #3
snprintf (msg, MSG BUFFER SIZE, "hello world #%1d", value); // Msg (Publish message: hello world #4
- 0 ~a n T = FERTEN Publish message: hello world #5
SE‘I'Z!_a]_ Pt lr't(Publish message:) ’ Publish message: hello world #6
Serial.println{msg) ; Publish message: hello world #7
client .p‘JbliEil'l(||aa||’ msg) : /7 TOpiC Publish message: hello world #8
' } Défilement automatique Afficher 'horodatage

PS C:\Program Files\mosquitto> ./rﬂGSqLIittU:Sub.e:(E 10.0.1.254 1883
world #12
world #13

world #14

world #15
world #16
world #17
world #18

4. Creation of a simple application :

The objective of this application is to implement a light management system using MQTT,
where the interaction between a button, a light (LED), and a luminosity value is handled
through publish/subscribe exchanges. Here's how the system works:

a) Button State Publishing: The button's status (ON or OFF) is published to a specific
MQTT topic (button/state). This allows other devices or applications subscribed to
this topic to know the state of the button in real time.

b) Light State Management: When the button is pressed, the LED state changes (ON
or OFF), its new state is also published with MQTT.

¢) Luminosity Feedback: A luminosity sensor measures the light intensity. This value
is published to light/state MQTT topic, enabling subscribers to get the LED's
brightness.

unsigned long now = millis()
if (now - lastMsg = 580) {
lastMsg = now;
int lumState = anaslogRead(lum);
int CurrentButtonState = digitalRead(button);
int LastButtonState = 0;
int ButtonPressed = 0;

// Detection of LED state change
if (CurrentButtonState && !LastButtonState) {
ButtonPressed = !ButtonPressed;

snprintf (msgl, MSG_BUFFER SIZE, "Button State: #%Ld", ButtonPressed); I/ Msg
snprintf (msg2, MSG_BUFFER_SIZE, "Light State: #%d", lumState); // Msg
Serial.print("Publish message: ");

Serial.println(msgl);

client.publish("button/state", msgl); // Topic

1
LastButtonState = CurrentButtonState;

// If the button is pressed, the state of the LED change
if (ButtonPressed) {

ledState = !ledState;

digitalwrite(BUILTIN_LED, ledState);

delay(200);

ButtonPressed = 0;

snprintf (msgl, MSG_BUFFER_SIZE, "Button State: #%ld", ButtonPressed); // Msg

snprintf (msg2, MSG_BUFFER_SIZE, "Light State: #%d", lumState); J/ Msg
Serial.print("Publish message: ");

Serial.println(msgl);

Serial.print("Publish message: ");

Serial.println(msg2);

client.publish("button/state", msgl); // Topic

client.publish("light/state", msg2); // Topic
}

On the serial monitor we can have a view on what is sent to the broker. Moreover, once the
subscription is done, we can have the different values for the sensors in real time.

Publish message: Button State: #1
Publish message: Button State: #0
Publish message: Light State: #583
Publish message: Button State: #1
Publish message: Button State: #0
Publish message: Light State: #62

PS C:\Program Files\mosquitto> ./mosquitto sub.exe 10.0.1.254 1883 button/state
Button State: #1
Button State: #0

PS C:\Program Files\mosquitto> ./mosquitto_sub.exe 10.0.1.254 1883 light/state
Light State: #583
Light State: #62

5. Creation of a complex application

Another group subscribed to our MQTT topic from their own code. When a press on our
button was detected and published on the topic, their system reacted by automatically
sending us the value measured by their light sensor. This interaction illustrates the
bidirectional communication and data synchronization between two loT devices via MQTT.

PS C:\Program Files\mosquitto> ./mosquitto_pub 10.0.1.254 1883 inTopic toto

Message arrived [inTopic] toto

Conclusion :

During this lab, we gained practical experience in deploying oneM2M nodes, both
Infrastructure Nodes (IN) and Middle Nodes (MN), to build a robust loT architecture.
Additionally, the deployment of MQTT nodes enhanced our understanding by enabling
seamless communication between devices. A significant takeaway was learning how to
interconnect heterogeneous devices at the application level. This hands-on experience not
only strengthened our knowledge of the oneM2M and MQTT protocols but also provided
valuable insights into orchestrating diverse devices within the loT ecosystem using
Node-RED as a versatile tool.

TP 3 : Middleware for loT Based on oneM2M standard

Introduction :

This report examines the practical application of middleware for the Internet of Things (loT),
with a particular emphasis on the oneM2M standard. Through a laboratory session utilizing
the ACME stack, we provide a hands-on exploration of essential concepts and functionalities
within the oneM2M ecosystem.

Simulated device :

This script creates an Application Entity (AE) to represent the device, along with containers
to store the states of a button and an LED. The script establishes a logical link between
these two components: the button's state ("ON" or "OFF") directly determines the LED's
state. If the Button state is 'ON,' the Light state is set to 'OFF,' and vice versa. At regular
intervals, the states are simulated, published in their respective containers, and can be
retrieved for visualization.

Origina CAd ‘Connected Auto Refresh BT T
ACME Originator: | CAdmin Pl setings © ACME riginator min - UDGERED | Setings

idin id-in

. - Base RI:

Contentinstance: id-in/ cse-in/Notebook-AE/buttonstatel °2°° ! Contentinstance: id-in/ cse-infNotebook-AE/ledState/
T cin_aeWwA4UOTdE cinB630759668927860596 cin_AMGk9210Al
v CSE: csen Atibutes JSON RESTUI v CSE:csedn Atiributess| JSON ~ RESTUI

= AE: CAdmin = AE: CAdmin

enf “textplain0" cnt “textplain:0"
v AE: Notebook-AE con s v AE: Notebook-AE con o
v CNT: buttonState - 3 v CNT: buttonState . 3
= CIN: cin_aeWw4UoTdE "20241220T154803,845694" = CIN: cin_aeWw4UoTdE "20241220T154803,889976"

= CIN: cin_fligaAdduQ et :20291219”54758'657817: & CIN: cin_fligaAdduQ et "20291219T154758,657817"
v CNT: ledState (0241 2201154505, 84500 ONT:leds *202412207154803,889976"
“ent1172652363442890450" v ledState B .

= CIN: cin_0GtbS32gdF CNIBIB575325348498504

" 3 o CIN: cin_0GtbS32gdF
L CIN: cin ANIGKS210A! 'cin7165596967805883748' ¢ 9 IR RS

" Ww4UoTdE" 3 S
cin_aeWw4Uo 5 CIN: cin_AMGK9210A! i AMIGKS210A"

st 2 t 2
st
¢ 4

ACME Originator: | CAdmin
id-in

Contentinstance: id-in/
€in9093179001215917399

v CSE:csedin
= ACP: acpCreateACPs
= AE: CAdmin
v AE: Notebook-AE
v CNT: buttonState
= CIN: cin_aeWw4UoTdE
= CIN: cin_fligaAddUQ
v CNT: ledState

o CIN: CIn_OGﬂJS:!ZF

= CIN: cin_AMGK9210Al

Auto Refresh IR IRO)

cse-in/Notebook-AE/ledState! Ean:

cin_0GthS32gdF

Attributes JSON REST UI

Attribute Value

cnf “text/plain:0”

con "ON"

cs 2
"20241220T154758,800848"

et "20291219T154758,657817"

"20241220T154758,800848"
“cnt6BO8575325348498504"
“cin9093179001215917399"
“cin_0GhS32gdF"

st 1
4

ACME Originator: | CAdmin
id-in

Contentinstance: id-in/
€in5874385850228810504

v CSE: cse-in
= ACP: acpCreateACPs
& AE: CAdmin
v AE: Notebook-AE
v CNT: buttonState
o CIN: cin_aeWw4UoTdE

v CNT: ledState
= CIN: cin_0GtbS32gdF
= CIN: cin_AMGK9210Al

LUGLEEE Settings O

cse-iniNotebook-AE/buttonstate/ 53¢ R
cin_fligaA4duQ

Attributes JSON REST UI

Attribute Value

cnf “text/plain:0"

con "ON"

cs 2
"20241220T154758,750815"

et "20291219T154758,657817"
"20241220T154758,750815"
"ent1172652363442890459"
"cin5874385850228810504"
"cin_fligaA4dUQ"

st 1

4

Conclusion:

This simulated device script demonstrates the seamless integration of an ESP8266-based
loT device with the ACME oneM2M stack. By accurately emulating the device's behavior,
such as creating, updating, and retrieving data within the oneM2M architecture, it highlights
the interoperability of various components within a standardized loT framework. Additionally,
ACME's intuitive web interface offers a user-friendly platform for resource visualization and
management, simplifying configuration and monitoring tasks. Moreover, the stack's
adherence to the oneM2M standard guarantees compatibility with other implementations,
promoting a collaborative and scalable lIoT ecosystem.

TP 4 : Fast application prototyping for loT

Introduction :

In this last laboratory session, the primary goal is to integrate the knowledge acquired from
TP1, TP2, and TP3 into a high-level application. The session emphasizes deploying a
comprehensive architecture that incorporates both real and simulated devices. To facilitate
the development process, we will utilize Node-RED, a versatile visual programming tool.
Node-RED provides an intuitive interface for connecting devices and APIs, streamlining the
creation of IoT applications. This approach not only accelerates development but also
deepens understanding of complex loT architectures. By leveraging Node-RED, we can
efficiently design and deploy applications, combining practical implementation with the
challenges of interfacing diverse devices and protocols.

1. Deploy the architecture

Firstly, we simulated the publication of data on the MQTT broker with the shell command:

PS C:\Program F1les\mosquitto> ./mosquitto_pub insa/temperature

Ps C:\Program Files\mosquitto> ./mosquitto_pub Tlocalhost insa/temperature
PS C:\Program Files\mosquitto> ./mosquitto_pub Tlocalhost insa/temperature

PS C:\Program Files\mosquitto> ./mosquitto_pub Tocalhost insa/temperature
Ps C:\Program Files\mosquitto>

2. Installation and access Node-RED

We had to do the environment’s configuration by installing node.js, installing Node-RED
(npm install -g --unsafe-perm node-red) and the integration of oneM2M nodes in
Node-RED from https://gitlab.irit.fr/sepia-pub/lightom2m.

After running the command node-red in the terminal to lunch Node-RED, we can access it
through the web browser at 127.0.0.1:1880.

3. Applications :
a. Check MQTT connectivity

We added a MQTT receiver block on Node-Red which was subscribed to the insa/luminosity
topic. On the debugger we received the values correctly.

<« C @A O 127.00.1:1880/#flow/6599211f1fe55544 * © 0D @

insaltemperature debug 9 v/

\Program F1les\mosquitto> ./mosquitto_pub ocalhost - 1nsa/temperature
Ps C:\Program Files\mosquitto> ./mosquitto_pub Jocalhost insa/temperature
Ps c:\Program Files\mosquitto> ./mosquitto_pub Jocalhost insa/temperature

MPs c:\Program Files\mosquitto> ./mosquitto_pub localhost insa/temperature
Ps c:\Program Files\mosquitto>

b. Sensors and activators

This Node-RED flow simulates a scenario where the light sensor sends the value received
by the sensor. A Switch node evaluates whether the luminosity exceeds or falls below a
threshold of 50, creating two distinct paths: LED ON or LED OFF. This setup demonstrates
the interaction between a luminosity sensor and a switch based on predefined conditions.

@
Switch ON

insa/luminosity Luminosity Value insa/light

Connecté @ Connecté
Switch OFF

Luminosity

https://gitlab.irit.fr/sepia-pub/lightom2m

If the light intensity is greater than 50 = LED ON
If the light intensity is less than or equal to 50 = LED OFF

PS C:\Program Files\mosquitto> ./mosquitto_pub lTocalhost insa/luminosity
PS C:\Program Files\mosquitto> ./mosquitto_pub Tocalhost insa/luminosity

PS C:\Program F1les\mosquitto> ./mosquitto_sup
LED ON
LED OFF

c. Dashboard

For the Dashboard part, we used the node-red-dashboard module to create a graphical user
interface to visualize sensor data and interact with connected devices. The data collected by
the sensors is displayed in real time in the form of graphs.

chart

40

30
20

10

0

15:47:41 15:48:01 15:48:25

Luminosity
23

¥ Windows PowerShell - a X

F1les\mosquitto> ./mosquitto_pub 1nsa/luminosity
Files\mosquitto> ./mosquitto_pub localhost insa/Tuminosity
Files\mosquitto> ./mosquitto_pub Tocalhost insa/luminosity
Files\mosquitto> ./mosquitto_pub Tocalhost insa/luminosity
Files\mosquitto> ./mosquitto_pub localhost insa/Tuminosity
Files\mosquitto> ./mosquitto_pub Tocalhost insa/luminosity
Files\mosquitto> ./mosquitto_pub Tocalhost insa/luminosity

Files\mosquitto> ./mosquitto_pub localhost insa/Tuminosity

Files\mosquitto> ./mosquitto_pub Tocalhost insa/luminosity

Files\mosquitto> ./mosquitto_pub Tocalhost insa/Tuminosity
PS C:\Program Files\mosquitto> ./mosquitto_pub Tocalhost insa/Tuminosity
PS C:\Program Files\mosquitto>

Additionally, buttons have been added to allow the control of actuators (e.g. turning LEDs on
or off). This interface provides a clear visualization of information and simplifies the
interaction with loT devices.

v 2 Node-RED: Temperature X 2 Node-RED Dashboard x o+ -
gram Files\mosquitto> ./mosquitto_sub Toca lhost insa/light
& C A O 127.00.1:1880/ui/#/0?socketid=BXVUxiuTIFJ6bYwWSAAAD [-3 ® O
Home
chart

13:30:30 13:31:00 133153

switch ®

~ & Node-RED: Temperature X 2 Node-RED Dashboard X+ =
Tocalhost insa/light
€ G R O 127.00.1:1880/ui/#}/02socketid=BXVUxiUTIFIGbYwS AAAD oy @ 9
Home
Dashboard
chart

30

2

10

0

13:30.30 133130 133257

switch [

d. Email and Notification

The email and notification sending functionality was implemented using the
node-red-node-email node. This part allows to configure automatic alerts that are sent when
the switch state, and luminosity change for a sensor value. This mechanism ensures

proactive monitoring of connected devices, allowing to react quickly to anomalies or critical
events.

chart
13:35:00 13:42:00
Luminosity
28

= Mi Gmail Q, Rechercher dans les messages E
< 8 0 ®@ 5 = Tsurt
/ Nouveaumessage
ediic.chanfreau@gmail com show notification - — insa/luminosity B de éeepion «
& Boite de réception 1
Switch ON ¥r Messages suivis G cedric.chanfreau@gmail.com 13:48 (il y a O minute)
insa/luminosity Luminosity Value insallight @© Enattente M
@ Connecté @ Connecté
SR B> Messages envoyés
D Brouillons 3
chart v Plus (« Répondre) (> Transférer
Luminosity Libellés +
switch insaflight
® Comecte

4. Benefits and drawbacks :

Developing applications with Node-RED offers several advantages:

User-Friendly Interface: Its visual programming approach simplifies application
creation, making it accessible to users with diverse technical skills.

Integration Capabilities: Node-RED excels in connecting various devices, protocols,
and APls. With a broad selection of nodes for databases, loT devices, web services,
it's ideal for applications requiring diverse integrations.

Fast Development: The availability of pre-built nodes for common functionalities
accelerates the development process, reducing the effort needed for building
complex applications.

However, Node-RED also has limitations:

e Scalability: While well-suited for small to medium-sized projects, managing flows can
become challenging as application complexity grows.
e Code Maintenance: Reviewing and verifying code is difficult since all application logic
is embedded in a single-line JSON file, complicating version control and debugging.
e Performance: It may not be the best option for applications that require high
performance or low latency.
Conclusion :

During this lab, we gained practical experience in setting up oneM2M IN and MN nodes to
build a solid IoT architecture. Adding MQTT nodes enhanced our understanding by enabling
smooth communication between devices. A major highlight was learning how to connect
heterogeneous devices at the application level. This hands-on session not only expanded
our knowledge of the oneM2M and MQTT protocols but also provided valuable skills in
managing diverse devices within the loT ecosystem, with Node-RED serving as an effective
orchestration tool.

