
Middleware For IoT
Report

Cédric Chanfreau
Samia Boukouiss

5A ISS
2024 - 2025



TP 1 & 2 : Middleware For the IoT

Introduction :

The goal of this laboratory is to explore the features and applications of the MQTT protocol
in the context of IoT. First, we will provide a concise overview of MQTT's main
characteristics. Next, we will install the necessary software on our laptops to enable the use
of MQTT. Finally, we will develop a simple application using an IoT device (ESP8266) that
communicates with a server on our laptop via the MQTT protocol.

1. MQTT :

- What is the typical architecture of an IoT system based on the MQTT protocol?

The standard architecture of an IoT system utilizing the MQTT protocol comprises multiple
devices (IoT nodes) that interact by publishing and subscribing to topics via an MQTT
broker. Devices exchange information by sending messages to specific topics, which other
devices subscribe to in order to receive the transmitted data. The MQTT broker serves as a
central mediator, enabling seamless communication between devices.

- What is the IP protocol under MQTT? What does it mean in terms of bandwidth
usage, type of communication, etc ?

MQTT functions on the TCP/IP protocol, utilizing the Internet Protocol suite for
communication. Its lightweight design ensures minimal bandwidth usage, making it
well-suited for resource-constrained networks and devices. Leveraging a publish/subscribe
model, MQTT enables efficient device communication with minimal overhead.

- What are the different versions of MQTT?
MQTT has three primary versions: MQTT v3.1, MQTT v3.1.1, and MQTT v5. Each
successive version brings enhancements and new features, with version 5 being the most
recent and comprehensive.

- What kind of security/authentication/encryption are used in MQTT?
MQTT incorporates several security features, such as username/password authentication
and Transport Layer Security (TLS) encryption. These measures ensure secure
communication between devices and the broker, protecting against unauthorized access and
eavesdropping.

- Suppose you have devices that include one button, one light and luminosity sensor.
You would like to create a smart system for you house with this behavior:

- you would like to be able to switch on the light manually with the button
- the light is automatically switched on when the luminosity is under a certain

value
What different topics will be necessary to get this behavior and what will the
connection be in terms of publishing or subscribing?



To implement this behavior with MQTT, the setup involves two topics:

- Topic for manual control ("home/light/control"): Used by devices to publish
messages for manually controlling the light.

- Topic for luminosity status ("home/light/luminosity"): Used by the luminosity sensor
to publish its readings.

Three subscriptions :

- Button: Subscribes to "home/light/control"
- Light: Subscribes to "home/light/control" and "home/light/luminosity"
- Luminosity Sensor: Subscribes to "home/light/luminosity"

Three connections :

- The button publishes messages to "home/light/control" when pressed.
- The luminosity sensor publishes its readings to "home/light/luminosity".
- The light listens to both topics, adapting its behavior based on the received

messages, whether for manual control or automatic adjustments informed by
luminosity values.

2. Install and Test the broker

To begin, we downloaded and installed the Mosquitto broker with the following command
line: apt install mosquitto. This broker, maintained by the Eclipse, is an open-source
implementation of the MQTT protocol, available for different operating systems
Then we started the Mosquitto broker by running the following command in the terminal.

Once the broker was running, we tested the communication using the publish and subscribe
commands.
In the following example, we used mosquitto_pub to publish a message to the topic /insa/test
and mosquitto_sub to subscribe to that topic and receive the corresponding messages.



These tests allowed us to validate that the communication between the client and the broker
was working correctly.

3. Creation of an IoT device with the nodeMCU board that uses MQTT communication:

a) Give the main characteristics of nodeMCU board in term of communication,
programming language, Inputs/outputs capabilities

Communication :

- Wi-Fi: Supports wireless communication, ideal for IoT applications.
- UART: Enables serial communication for debugging and device interfacing.

Programming Language :

- C/C++: Programmable using the Arduino IDE.

Inputs/Outputs :

- GPIO Pins: Provides digital input/output functionality.
- Analog Input: Supports a single analog input pin for sensor readings.
- PWM Support: Allows Pulse Width Modulation for applications like LED dimming.
- I2C and SPI: Facilitates communication with peripheral devices like sensors.

b) Arduino IDE Installation

For the development with microcontrollers like the esp8266, we had to download Arduino
IDE and set up the environment with the command: sudo apt install arduino

c) Add the board NodeMCU

In Arduino IDE, we added support for the NodeMCU board by including the link to the
ESP8266 board manager in the preferences, then installed the board via the built-in
manager.



d) Add the library ArduinoMqtt

Then we searched for and installed the ArduinoMqtt library developed by Oleg
Kovalenko via the library manager

e) Application Example

For this step we used the PubSubClient library by installing it via the Arduino Library
Manager. We then opened the mqtt_esp8266 example provided with the library. This code
allows us to establish a connection with the MQTT broker, send messages and read
received ones.



f) Add publish/subscribe behavior

Using the same mqtt_esp8266 example, we modified and tested the publishing and
subscribing functions. The ESP8266 was configured to publish messages to “aa” topic and
the laptop was subscribed to this topic to receive messages in return. These interactions
were validated via the serial monitor and the mosquitto_sub commands.

4. Creation of a simple application :

The objective of this application is to implement a light management system using MQTT,
where the interaction between a button, a light (LED), and a luminosity value is handled
through publish/subscribe exchanges. Here's how the system works:

a) Button State Publishing: The button's status (ON or OFF) is published to a specific
MQTT topic (button/state). This allows other devices or applications subscribed to
this topic to know the state of the button in real time.

b) Light State Management: When the button is pressed, the LED state changes (ON
or OFF), its new state is also published with MQTT.

c) Luminosity Feedback: A luminosity sensor measures the light intensity. This value
is published to light/state MQTT topic, enabling subscribers to get the LED's
brightness.



On the serial monitor we can have a view on what is sent to the broker. Moreover, once the
subscription is done, we can have the different values for the sensors in real time.

5. Creation of a complex application

Another group subscribed to our MQTT topic from their own code. When a press on our
button was detected and published on the topic, their system reacted by automatically
sending us the value measured by their light sensor. This interaction illustrates the
bidirectional communication and data synchronization between two IoT devices via MQTT.



Conclusion :

During this lab, we gained practical experience in deploying oneM2M nodes, both
Infrastructure Nodes (IN) and Middle Nodes (MN), to build a robust IoT architecture.
Additionally, the deployment of MQTT nodes enhanced our understanding by enabling
seamless communication between devices. A significant takeaway was learning how to
interconnect heterogeneous devices at the application level. This hands-on experience not
only strengthened our knowledge of the oneM2M and MQTT protocols but also provided
valuable insights into orchestrating diverse devices within the IoT ecosystem using
Node-RED as a versatile tool.

TP 3 : Middleware for IoT Based on oneM2M standard

Introduction :

This report examines the practical application of middleware for the Internet of Things (IoT),
with a particular emphasis on the oneM2M standard. Through a laboratory session utilizing
the ACME stack, we provide a hands-on exploration of essential concepts and functionalities
within the oneM2M ecosystem.

Simulated device :

This script creates an Application Entity (AE) to represent the device, along with containers
to store the states of a button and an LED. The script establishes a logical link between
these two components: the button's state ("ON" or "OFF") directly determines the LED's
state. If the Button state is 'ON,' the Light state is set to 'OFF,' and vice versa. At regular
intervals, the states are simulated, published in their respective containers, and can be
retrieved for visualization.



Conclusion :

This simulated device script demonstrates the seamless integration of an ESP8266-based
IoT device with the ACME oneM2M stack. By accurately emulating the device's behavior,
such as creating, updating, and retrieving data within the oneM2M architecture, it highlights
the interoperability of various components within a standardized IoT framework. Additionally,
ACME's intuitive web interface offers a user-friendly platform for resource visualization and
management, simplifying configuration and monitoring tasks. Moreover, the stack's
adherence to the oneM2M standard guarantees compatibility with other implementations,
promoting a collaborative and scalable IoT ecosystem.

TP 4 : Fast application prototyping for IoT

Introduction :

In this last laboratory session, the primary goal is to integrate the knowledge acquired from
TP1, TP2, and TP3 into a high-level application. The session emphasizes deploying a
comprehensive architecture that incorporates both real and simulated devices. To facilitate
the development process, we will utilize Node-RED, a versatile visual programming tool.
Node-RED provides an intuitive interface for connecting devices and APIs, streamlining the
creation of IoT applications. This approach not only accelerates development but also
deepens understanding of complex IoT architectures. By leveraging Node-RED, we can
efficiently design and deploy applications, combining practical implementation with the
challenges of interfacing diverse devices and protocols.

1. Deploy the architecture

Firstly, we simulated the publication of data on the MQTT broker with the shell command:



2. Installation and access Node-RED

We had to do the environment’s configuration by installing node.js, installing Node-RED
(npm install -g --unsafe-perm node-red) and the integration of oneM2M nodes in
Node-RED from https://gitlab.irit.fr/sepia-pub/lightom2m.

After running the command node-red in the terminal to lunch Node-RED, we can access it
through the web browser at 127.0.0.1:1880.

3. Applications :
a. Check MQTT connectivity

We added a MQTT receiver block on Node-Red which was subscribed to the insa/luminosity
topic. On the debugger we received the values ​​correctly.

b. Sensors and activators

This Node-RED flow simulates a scenario where the light sensor sends the value received
by the sensor. A Switch node evaluates whether the luminosity exceeds or falls below a
threshold of 50, creating two distinct paths: LED ON or LED OFF. This setup demonstrates
the interaction between a luminosity sensor and a switch based on predefined conditions.

https://gitlab.irit.fr/sepia-pub/lightom2m


If the light intensity is greater than 50⇒ LED ON
If the light intensity is less than or equal to 50⇒ LED OFF

c. Dashboard

For the Dashboard part, we used the node-red-dashboard module to create a graphical user
interface to visualize sensor data and interact with connected devices. The data collected by
the sensors is displayed in real time in the form of graphs.

Additionally, buttons have been added to allow the control of actuators (e.g. turning LEDs on
or off). This interface provides a clear visualization of information and simplifies the
interaction with IoT devices.



d. Email and Notification

The email and notification sending functionality was implemented using the
node-red-node-email node. This part allows to configure automatic alerts that are sent when
the switch state, and luminosity change for a sensor value. This mechanism ensures
proactive monitoring of connected devices, allowing to react quickly to anomalies or critical
events.



4. Benefits and drawbacks :

Developing applications with Node-RED offers several advantages:

● User-Friendly Interface: Its visual programming approach simplifies application
creation, making it accessible to users with diverse technical skills.

● Integration Capabilities: Node-RED excels in connecting various devices, protocols,
and APIs. With a broad selection of nodes for databases, IoT devices, web services,
it’s ideal for applications requiring diverse integrations.

● Fast Development: The availability of pre-built nodes for common functionalities
accelerates the development process, reducing the effort needed for building
complex applications.

However, Node-RED also has limitations:

● Scalability: While well-suited for small to medium-sized projects, managing flows can
become challenging as application complexity grows.

● Code Maintenance: Reviewing and verifying code is difficult since all application logic
is embedded in a single-line JSON file, complicating version control and debugging.

● Performance: It may not be the best option for applications that require high
performance or low latency.

Conclusion :

During this lab, we gained practical experience in setting up oneM2M IN and MN nodes to
build a solid IoT architecture. Adding MQTT nodes enhanced our understanding by enabling
smooth communication between devices. A major highlight was learning how to connect
heterogeneous devices at the application level. This hands-on session not only expanded
our knowledge of the oneM2M and MQTT protocols but also provided valuable skills in
managing diverse devices within the IoT ecosystem, with Node-RED serving as an effective
orchestration tool.


