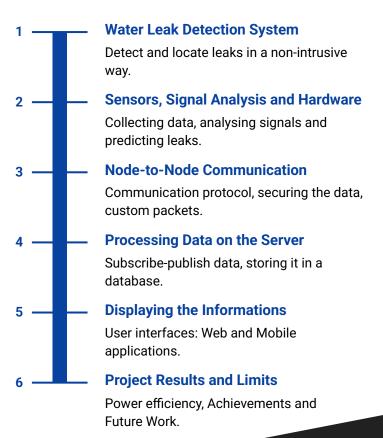
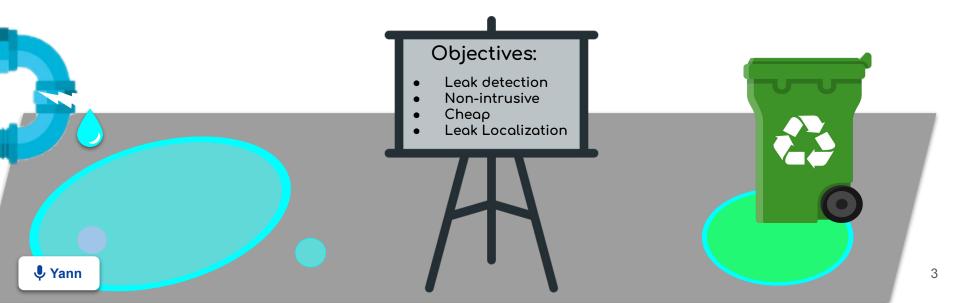

Non-Intrusive Detection of Water Leaks in Pipeline Networks Using Vibration and Acoustic Sensors


An Innovative Project

PTP Innovative Smart Systems

Yohan Boujon Robin Marin--Muller Cyril Vasseur Cédric Chanfreau Yann Jobard Supervised by William Perez

Summary



What A Leak

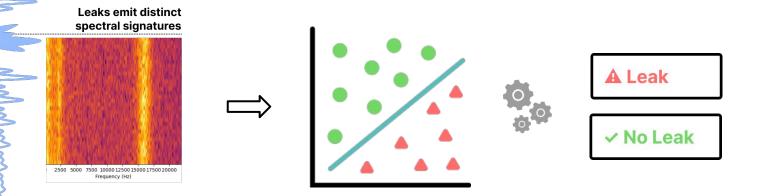
Problem Statement

- In France, **20%** of the water transported through the distribution network is lost due to leaks. (**1 billion m**³)
- For public infrastructures leaks cost more than 4 billion euros in France.
- Traditional methods are costly and inefficient.

Overview

What is our solution? Nodes Server Gateway 1. **Nodes** collect vibration data using

Yann


2. Data is sent via LoRa to the Gateway.

accelerometers and microphones.

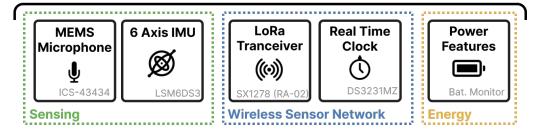
- 3. The Gateway uses **Machine Learning** to identify if there is a leak.
- 4. The data is sent to the Server through the web to be stored in the **Database**.
- 5. **User Interfaces** (Website and App) retrieve relevant information and conclusions from the database.

Principle and Architecture

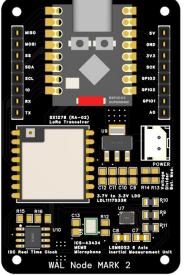
How can we identify leaks, what principles can we use?

Data Collection and Feature Extraction

SVN Machine Learning Classifier


Model Prediction

Hardware Architecture


Which hardware is required, for effective leak detection and WSN integration?

Processing

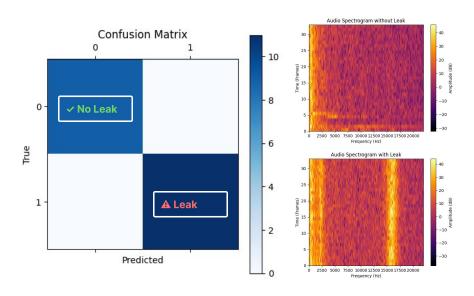
Hardware Architecture

PCB Rev 1

PCB Rev 2

Machine Learning

How to improve leak detection accuracy?


Traditional Methods?: Like Threshold-Based Detection: Unsuitable and hard to implement due to unpredictable noise.

Machine Learning Approach

Feature Extraction: Fast Fourier Transform (FFT) to identify frequency patterns unique to leaks.

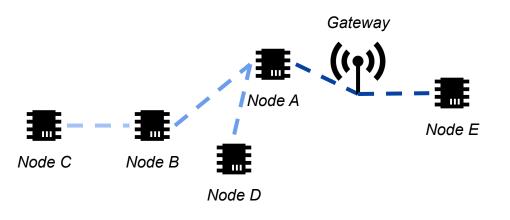
Algorithm: Support Vector Machines (SVM) for classification.

Good Training Data = Good Results

LoRa Communication

Which method is best for communication?

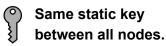
Choosing the Right Frequency:

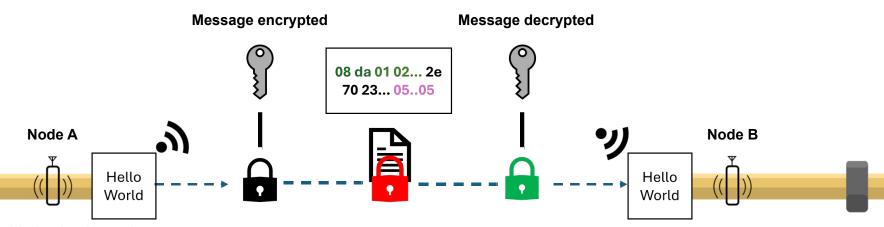

- LoRa on 433MHz can go through many different materials.
- (Possible Upgrade) Lower frequencies with a custom implementation.

Mesh Network Structure:

- Each node can communicate with its neighbor.
- Sending its information until the gateway is reached.

- 266m in an unobstructed area
- 35m with 2 well-isolated floors





Cryptographic Security

How to secure communication?

IV (Initialisation Vector):

- Minimal Overhead (2 Dynamic 14 Static Bytes).
- Add Randomness to Encryption (Prevents Replay Attacks).
- Unique Encrypted Data.
- Enhanced Data Security.

Padding:

- Extra Bytes to Data.
- Block Size Alignment (16 Bytes).

Custom Protocol

How can we exchange data?

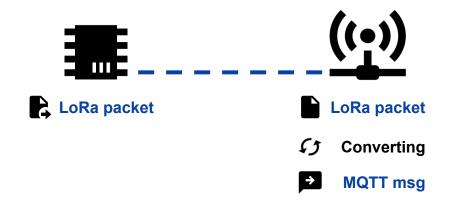
- Using the less possible memory:
 - 256 Bytes maximum can be send each time.
 - It takes multiple milliseconds to send this data each time.

before topology	10 bytes		
WAL Header	Address SRC	Address DST	Command
(3 bytes)	(3 bytes)	(3 bytes)	(1 byte)

after topology 6 byte					
WAL Header	Node SRC	Node DST	Command		
(3 bytes)	(1 byte)	(1 byte)	(1 byte)		

The destination changes at every node.

- Topology Payload
- Time Payload
- Data Payload
- Battery Payload

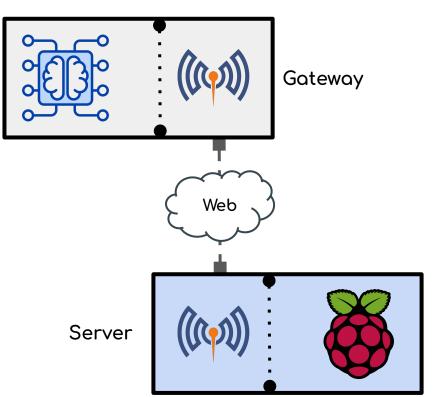


Custom Protocol

How can we exchange data?

- The data has to be easily readable for each operation.
- MQTT with a simple publisher can transfer the data to the *internet*.

Server-Side Processing


How does the data reach the server?

• Data Reception through web:

- MQTT Client Gateway.
- MQTT broker receives sensor data.

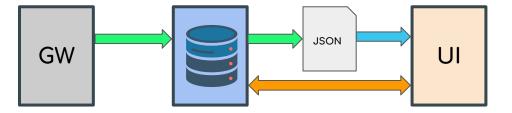
Security:

- MQTT communication limited by credentials.
- Firewall configuration.
- On reception, server throws inadequate Data received.

Server-Side Processing

How de we store the data?

Dynamic Data


- CHANGING OFTEN
- Node 's ID
- Measures:
 - FFT
 - Status
 - Timestamp
- Accessory:
 - Temperature
 - Battery

Static Data

- RARELY CHANGING
- Node 's ID
- Location
- UI Settings

Processing:

Format static data into JSON for visualization on web and mobile platforms.

Web interface

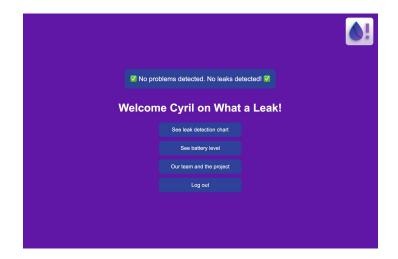
How can we show the collected data to the user?

Web Application:

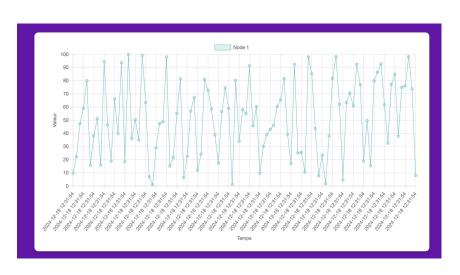
- Developed with Spring Boot and Maven.
- Accessible from everywhere.

Real time update:

Each update on the DB.



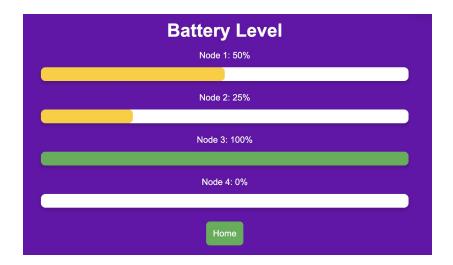
User Login Screen



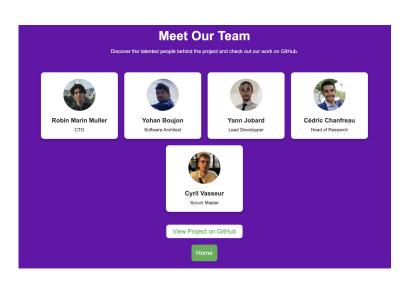
Web interface features

How can we show the collected data to the user?

Real Time Alerts



FFT Visualisation



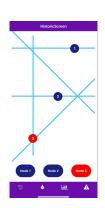
Web interface features

How can we show the collected data to the user?

Battery Level Monitoring

The Team

Mobile application

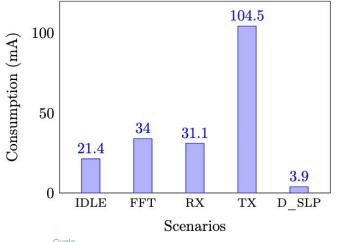

How to make it more user-friendly?

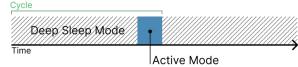
Main Screens:

- **Home Screen:** User authentication (Log-in / Log-out).
- Dashboard Screen: Real-time node status (battery level...).
- **History Screen:** Node mapping over the network pipe.
- Statistics Screen: Water consumption over time.
- Leak Screen: Alerts and leak history.

Key Features:

- Cross-Platform: React Native & Expo for Android and iOS.
- **Intuitive Interface**: User-friendly dashboard for real-time monitoring and quick actions.
- Data Synchronization: Integration with the server for live updates.
- **Comprehensive Tracking**: Leak history, node status, call a professional and water usage.





Energy Management

What is the biggest limit of the system?

Energy Consumption of WAL Node V1

Real Application with two *INR18650-25R* batteries:

- Capacity of one battery: $2500\,\mathrm{mAh}$
- ullet Two batteries in parallel: $2500 imes 2 = 5000 \, \mathrm{mAh}$
- Node consumption: 3.9 mA

$$\frac{Total~Battery~Capacity}{Node~Consumption} = \frac{5000}{3.9} \approx 1282\,hours$$

$$\frac{1282}{24}\approx 52\,\mathrm{days}$$

Challenges and Future Work

What are all our current limits?

No battery management.

Inductive charging and optimised consumption.

Signal interferences in high-noise environments.

Refine Al models for better accuracy.

Untested prototype under real-world conditions.

Install the network in an expanded and more realistic prototype model.

Current physical model prototype not as effective has we wanted.

Redesign/build (asking help to a professional).

Results

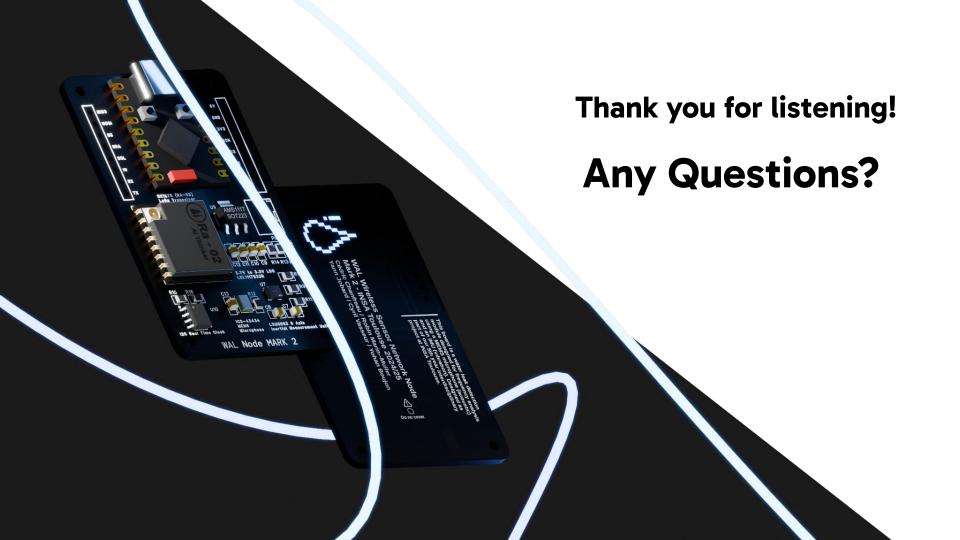
What have we accomplished?

Controlled tests confirmed accurate leak detection and signal classification.

Succeeded using the Agile method.

Successful LoRa communication even in noisy environments.

Mark 1 fully working. Mark 2 in progress.



Effective node to website/mobile application communication.

Great teamwork.

Kick Starter **!**

