

Cloud Computing

Chanfreau Cedric

Boukouiss Samia

5 ISS

15/10/2024

Lab 1: Introduction to Cloud Hypervisors

Theoretical part
Objectives 1 to 3:

1. Similarities and differences between the main virtualisation hosts (VM et CT)

We will compare the two types of hosts based on two perspectives: from an application

developer’s point of view, and from an infrastructure administrator point of view.

From an application developer’s :

Virtual Machine

Container

Virtualization cost, taking into
consideration memory size

and CPU

It requires more memory, as
each VM includes its own
OS. It’s more expensive to
virtualize because it emulates
an entire machine on the
hardware level.

It requires less memory
because the CT doesn’t
duplicate the OS and the
application is bundled to run
across various environments.
This makes it lightweight and
cheaper to host.

Usage of CPU, memory and

network for a given
application

Higher CPU overhead due to
the emulation of hardware
and presence of multiple OS
instances. So, there is more
control over the allocated
resources

Lower CPU overhead
because they run as
lightweight processes on the
host OS.

Security for the application

(access right, resources
sharing)

More secure because there is
a strong isolation between

Security flaws because
containers share the same
kernel and libraries as the

applications (each VM runs
its own complete OS).

host system (they are more
vulnerable to attacks and
exploits)

Performances (response

time)

Higher response time
because for each operation
we have to regenerate the
environment.

Lower response time, startup
in ms.

Tooling for the continuous

integration support

No widespread development
tools.

It comes with development
kits.

Flexibility, dynamicity

Difficult to modify disk size
and allocated resources for a
VM, and transferring
programs requires more
effort.

Easy to adjust allocated
resources for a container or
application, with minimal
code needed to transfer and
deploy work.

From an infrastructure administrator :

1- Developer point of view :

Virtual Machines

Containers

VM, though bulkier and less
flexible, are useful for tasks
requiring full machine
emulation or precise network
control. However, due to their
high costs, slow boot times,
and excessive resource
demands, they are often an
impractical choice for most
development needs.

CT offer developers
portability and flexibility,
enabling cost-effective and
efficient application hosting.
Their lightweight nature
allows for resource sharing,
quick startup, and response
times, making them ideal for
testing and deployment.
Additionally, bundled
development kits provide
extra benefits.

2- System Administrator point of view :

Virtual Machines Containers

VM are valued by system
administrators for their
complete isolation, which
enhances security and
independence, and their
unique OS that provide
specialized tools. Although
they are resource-intensive,
this is typically manageable
for administrators overseeing
large systems with sufficient
resources.

CT present notable
challenges for system
administrators due to security
risks, limited control over
hardware, and restricted
network configurations.
These issues make CT less
suitable for system
administration tasks.

2. Similarities and differences between the existing CT types

Different CT technologies are available in the market (e.g. LXC/LXD, Docker, Rocket,
OpenVZ, runC, containerd, systemd-nspawn). Their respective positioning is not obvious,
but comparative analyses are available online such as:

- LXC is an operating system-level virtualization tool. It allows running multiple
isolated Linux operating system instances on a single Linux host, while sharing the
same kernel.

- Docker is a containerization platform that allows applications to run in isolation.

Unlike LXC, Docker focuses specifically on containerizing applications, rather than
entire operating systems.

We define here the criteria we will use to compare the container technologies (CT) :

- Application Isolation and Resources (Multi-tenancy):

It refers to the architecture of the server hosting containers, where a single instance of the
host OS supports multiple tenants (containers).

- Containerization Level (e.g., Operating System, Application):

Containerization packages software and its dependencies, enabling it to run anywhere.

- Tooling (e.g., API, Continuous Integration, Service Composition):

It refers to the tools offered with the container service, such as development kits, migration
tools, and custom settings.

Technology Application
Isolation

Containerization level Tooling

LXC

Light Isolation:
Although containers
share the core, they
remain isolated from
each other, ensuring
adequate security
and stability.

OS level containers,
allowing kernel sharing
with the host.

LxC offers a CLI for
container management
and supports APIs.

Docker

Enhanced Container
Isolation provides an

Operating system level
containers, allowing

Docker is well-known
for its user-friendly CLI

additional layer of
security to prevent
malicious workloads
running in containers
from compromising
Docker Desktop or
the host.

kernel sharing with the
host.

and API. It has strong
CI/CD support with
Docker Compose and
Kubernetes integration.
Docker Compose is
useful for service
composition.

Rocket

RKT provides
application isolation
using proven
mechanisms such as
Control Groups
(Cgroups) and
SELinux, ensuring
that containers run in
protected
environments and
limit their access to
system resources.

Application-level
containers, with a
layered architecture
allowing for flexibility.

It features a CLI for pod-
based deployments and
integrates seamlessly
with systemd for
service.

OpenVZ

Good isolation even if
containers share the
kernel.

Application level

It offers a variety of
management tools.

runC

runC is a CLI tool for
spawning and
running containers
on Linux according to
the OCI
specification.

Application-level
containers, integrated
in larger systems.

It operates with a
command-line interface
and adheres to OCI
specifications for
managing container
lifecycles.

https://rocket.readthedocs.io/en/latest/Documentation/rkt-vs-other-projects/

3. Similarities and differences between Type 1 & Type 2 of hypervisors’ architectures

There are two main types of hypervisors:

https://rocket.readthedocs.io/en/latest/Documentation/rkt-vs-other-projects/

- Type 1 (or “bare metal”)
- Type 2 (or “hosted”)

A Type 1 hypervisor runs directly on the host's hardware, functioning like a lightweight
operating system and it is preferred in enterprise and production environments for its
performance and security.

While a Type 2 hypervisor operates as a software layer on an existing operating system, like
other applications and it is commonly used in desktop and development settings for its
ease of use.

Architecture

Performance

Use cases

Type 1 (OpenStack)

It operates directly
on the physical host
machine's bare-
metal hardware
without the need for
an underlying OS.

It usually provides
better performance
by directly
accessing hardware
resources,
eliminating the
overhead of an
operating system
layer.

It is commonly used
in enterprise data
centers and cloud
environments where
performance,
scalability, and
resource isolation
are critical.

Type 2 (VirtualBox)

It runs on top of an
existing OS and
operates as
applications or
processes within
that traditional OS.

It generally has
more overhead than
Type 1 hypervisors
because it depends
on the host OS to
manage hardware
resources.

It is commonly used
in desktop or
developer
environments where
performance is less
critical.

Practical part

Objectives 4 to 7 :

In this part, we will use the VirtualBox hypervisor (type 2) in NAT mode and set up the
network to enable two-way of communication with the outside.

First part: Creating and configuring a VM
- Open VirtualBox
- Unzip archive
- Create and configure a new VM
- Launch the VM

Second part: Testing the VM connectivity
a) VM Connection

Once logged in, we used the ifconfig command in the VM terminal to identify the assigned
IP address:

NAT Addres: 172.17.0.1

Virtual Machine Address: 10.0.2.15

Loopback address : 127.0.0.1

Host Machine associated to VirtualBox Host Only-Network: 192.168.56.1

Address Ethernet Interface of Host: 10.1.5.89

b) Connectivity Verification

In this part, we tested the different connectivity between each component:

- Vm  Host Machine: Ping Ok

- Host Machine  Nat / VM: Ping Failed

To conclude those tests, it was not possible to ping the host machine with the VM because
of the NAT that is between, and the address is not routable. Whereas the opposite was
possible.

To resolve this issue, a solution would be to use a port forwarding rule. Allowing to ensure
the communication by redirecting request from host to any port configured inside the VM.

Third part: Set up the “missing” connectivity

To enable communication between the host machine and the VM in NAT mode, we can
configure port forwarding in VirtualBox

By specifying that all data arriving on the physical machine at a specific port (1234) is
destined for the VM port 22.

After this configuration, we installed openssh on VM to test thanks PuTTy that the
connection was well established.

It is possible now to ping the VM with any machine on the network.

Fourth part: VM duplication
To create a new clone with the same disk file, here is the command we used:

1. Docker Containers Setup:
- Update existing list of packages:

- Install prerequisite packages which let apt use packages over HTTPS:

- Add the GPG key for the official Docker + Docker repository to APT sources:

- Update existing list of packages again for the addition to be recognized:

- Make sure we will install from Docker repository instead of Ubuntu repository:
- Install Docker + Check it is running:

Installing Docker now gives us not just the Docker service (daemon) but also the docker
command line utility, or the Docker client.

Fifth part: Docker containers provisioning

We can now provision Docker nodes.

- Pull an Ubuntu image:

- Execute Ubuntu instance image CT1:

- Install required connectivity testing tools:

- Check the connectivity:
o Ifconfig to get IP Address ➔ 172.17.0.2:

Each Docker container use a virtual network interface (“bridge”) where they get a distinct
IP address which is part of an internal subnet managed by Docker.

o Ping Internet resource from Docker was a success:

The Docker container was able to contact an external resource on the internet, proving that
the NAT network configured for Docker allows the container to access the outside.

o Ping VM from Docker was a success too:

Docker can contact the VM hosting the container, which demonstrates that the internal
communication between the two environments (Docker container and VM) works.

o Ping the Docker from the VM worked well:

Similarly, the VM was able to ping the Docker container, showing successful bi-directional
connectivity between the VM and Docker.

All connectivity tests passed, showing that the network configuration between Docker, the
host machine (VM), and Internet access was done correctly.

- Execute a new instance (CT2) of the ubuntu Docker:

Start a new Ubuntu container and configure port forwarding to allow SSH access from the
host via port 2233

- Snapshot of VT2:

Saves the current state of the container as a Docker image for later reuse or sharing.

It can be useful to commit a container's file changes or settings into a new image. This lets
you debug a container by running an interactive shell or export a working dataset to
another server.

By default, the container being committed, and its processes will be paused while the
image is committed.

- Stop and terminate CT2:

Stops the CT2 container and deletes it to free up resources.

- List the available Docker images in the VM:

Shows all Docker images stored locally on the VM to see which ones are ready to use.

- Execute a new instance CT3 from the previous snapshot:

Starts a new CT3 instance based on the previous image, retaining the installed
environment and tools (like Nano).

- Make a proper recipe with DockerFile:

With the automated script (Dockerfile), we created a custom Docker image with project-
specific dependencies and configurations.

Objectives 6 and 7:

First Part: CT creation and configuration OpenStack

- OpenStack Connexion/Authentication:

- Creation of a VM / private network and gateway

A VM cannot be created from a public network for different reasons, so we created a private

network:

o Network separation: The private network allows to isolate VMs from other networks.

Indeed, this means that VMs can communicate with each other without being

directly exposed to external threats or unauthorized traffic from the Internet.

o Traffic control: We can better manage incoming and outgoing traffic. The router

plays an important role because it controls the flow between private and public

network.

To allow ICMP traffic (ping) and SSH, we added three new security rules:

Second Part: Connectivity test

First, we associated an flotant IP for the VM to access the VM from the outside thanks ssh.

IP address from VM: The IP address displayed on the dashboard:

- 192.168.37.28: Public address useful to access the VM from outside.

- 12.7.5.176: Private address to communicate with another machine of the private network

Here, the router is important because it allows us to link the private network where the VM is

connected and the public network.

Connectivity Test:

Ping Google from the VM indicates that the network configuration is properly set up, allowing the

VM to communicate with external tools.

Pinging the VM from the desktop verifies that incoming connections to the VM are working as

intended. This indicates that the VM's firewall and security group settings are appropriately

configured to allow traffic from the desktop.

The ability to ping the desktop from the VM confirms that the internal network configuration is

functioning correctly. This ensures that the VM can communicate with other devices on the same

network.

Network Topology:

The network topology diagram allows to visualize the different networks, routers and instances

deployed in the infrastructure. This gives a clear overview of the connections and routing. By

analysing this diagram, we can check how the VMs are connected to each other and to the

outside.

Problem Possible:

A problem can be the absence or misconfiguration of the connection between the private network

and the public network. If the instances are only connected to a private network without a gateway

to the public network or the Internet, it will not be possible to access the outside or be accessible

from it.

In our case, the problem could come from the absence of a correctly configured router to connect

the private and public networks, or from bad routing between the subnets.

New topology creation:

- Create a new network with the gateway definition (192.168.37.1)

- Create a new VM by selecting private network

- Make sure about the coherency between private network address and router.

- Create a new router that will be the role of link between private and public network.

- Create a floating IP to be able to access the VM by the outside.

- SSH connectivity to the VM.

As SSH connectivity is working, this proves that the network configuration, router, and floating IP

are configured correctly.

Third part: Snapshot, restore and resize a VM

Resize a running and a shutdown VM was not possible, and an error occurred because of the

rights access.

For the two previous tests, the limitation highlighted that to resize a VM, some administrative

rights are necessary. A solution could be to give user role allowing some operations of resources

management. This will allow more users to benefit from the flexibility of virtualization without

compromising security.

By creating a snapshot of the VM, we were able to capture the current state of the system,

including all files, configurations, and software installed at that time.

Therefore, if changes are made to the VM after the snapshot is created, those changes will not

be present in the snapshot, which could be useful for reverting to a previous state in case of a

problem.

When restoring the VM from the latest snapshot, we were able to find the exact state of the

machine at the time the snapshot was created and also select new size for the VM. This allowed

us to quickly recover a working system after unwanted changes or crashes

Objectives 8 & 9:

First Part: OpenStack client installation

- OpenStack client installation on Ubuntu VM.

- Configure the client with the command that loads the variables from the RC file into our

current terminal session, enabling communication with the OpenStack environment.

- Start OpenStack client, this opens the OpenStack CLI.

- To get a list of available commands and options within the OpenStack CLI, we displayed

the help menu by typing with help command.

- To get more detailed help on a specific OpenStack command, such as how to list projects,

we appended project list –help.

Second Part: Web 2-tier application topology and specification

The application includes Node.js microservices to perform arithmetic operations: addition,
subtraction, multiplication, and division, as well as a calculator service that handles HTTP
requests.

To deploy each microservices on the VM multiple steps was required:

- Instance connection: Here we used ssh for ease of use

- Dependencies installation: Installation of Nodejs (microservices execution), npm (Nodejs

dependencies management) and curl (HTTP request).

- Microservices installation: Download JavaScript files inside VM of the microservice we

want to deploy.

- Microservice startup: Script execution to listen request inside the specified port.

- Launch operations: We used curl in the VM1 to send a POST request on each service:

o SumService

 (+)

 VM1

o Subservice:

 (-)

 VM1

o MulService:

 (*)

 VM1

o DivService:

 (/)

 VM1

The micro-services operations work, we can now try the Calculator Service :

- IP adresses modification in the Calculator Service code

Port of SumService : 50001

Port of SubService : 50002

Port of MulService : 50003

Port of DivService : 50004

- Add the missing “sync-request” module and re start the services

o Calculator Service :

To communicate with the Calculator Service from the public network, we have to :

- Modifiy the Calculator Service port (it should be between 50000 and 50050) :

- To add a security rule : TCP (input/output) at port 50010 :

 Calculator Service

 Extern VM

Objectives 10 and 11 :

Part one and two: The client requirements and target network topology & Deployment of

the target topology

Let us consider a client that would like to deploy a Web application over a specific network

topology. The latter provides secured access to intermediate services. In addition, the same client

did specify that hosting VMs should be split between 2 IP networks.

For this, we have to:

- Create a new private network

- Create a new VM in the 2nd private network (Calculator Service)

- Delete the old Calculator Service

- Delete the Gateway interface to the 1st private network and add it to the 2nd private network

- Create a router between the 1st and 2nd private network

- Define a traffic route between the two private networks

- We defined the traffic route between the two private networks. It redirects the front end

machine to the network 2 anytime it tries to communicate with one of the microservices.

- Ping calculator from net2 from a microservice/desktop ==> OK

Additional Part:

The goal of the exercise is to configure the microservices so that they are accessible from
outside the network or from another VM located in a different private network.

- Configure Private Network 2 to allow internal connectivity between VMs, bypassing
the public network.

- Configure security rules to allow internal traffic between VMs on Private Network 2.
- Ensure that the CalculatorService listens on the internal IP address of Private

Network 2 (13.0.0.166) only.
- Test internal connectivity between VMs via ping and open the microservice to test it.

 Calculator

VM from private network2

Automation Part:

The goal is to create a Python script capable of automatically deploying and configuring
networks, instances and routers in OpenStack from a configuration file in JSON format.

- JSON file creation: it contains complete OpenStack network configuration, included
network, router and instances to be deployed. This file serves as a data source for the
Python script that will interpret and apply this configuration.

- Python Script: it is responsible for reading the JSON file and then using the

OpenStack API to configure the resources described in that file.

o OpenStack Connection
o JSON reading

o SubNet creation

o Instances creation

o Router creation

Lab 2: Orchestrating services in hybrid cloud/edge

environment

tiny.cc/TP_EdgeComputing
In this lab, we will explore implementing services in a hybrid cloud/edge environment using
Kubernetes. The goal is to meet the needs of next-generation autonomous vehicles, which
require real-time interactions with minimal latency to ensure optimal performance.

During this lab, we will configure a Kubernetes cluster spread across three virtual machines,
simulating an intelligent infrastructure. This cluster will allow us to manage and orchestrate
services deployed as Docker containers on different nodes, in order to ensure processing
close to the vehicles and thus maintain very low response times.

We will also look at dynamic migration of services as the vehicle moves, thus allowing
optimized resource management and adaptation to real-time needs.

- Setup cluster K8s
1- Master
2- Worker nodes

- Deploy services
- Manage QoS services (SLA)

 M K8s

 W W
 { Docker } { Docker }

SLA
Manager

Part 1: Cloud infrastructure setup

In this part we will set up the Kubernetes cluster with 3 running nodes:

- Creation of a novel private network and connect it to the public using a well-configured

gateway, instantiation of the master-node VM and 2 worker nodes VM (Ubuntu_20
cloud image and a medium flavor.):

- Generation of 3 floating IP addresses and associate them to the VM:

- On each machine some configurations were required:
o New user creation

o Setup the SSH connection on the VM. Open the file sshd_config and set

PasswordAuthentication to “yes” using nano editor : nano /etc/ssh/sshd_config

o Once connected with ssh on each VMs, we initialized clusters and changed

host names.

o In the next steps we updated packages, installed curl, got repository key, add
Kubernetes component and marked them as hold to keep them running.

o After, we enabled docker to start, change docker group as cgroup driver
before restarting it.

After different commands, in order to properly setup the nodes networking, we had to :

- Go to : /usr/lib/systemd/system/kubelet.service.d
- Open 10-kubeadm.conf and add the flag - - node-ip to the KUBELET_CONFIG_ARGS

with the IP of your master ens3 interface.

- Get the token to join the cluster that we copied and runned as sudo on each of the

worker nodes.

- Check the status of our cluster by running the following command:

We notice that the nodes appear when running the kubectl get nodes -o wide command.
However, their status is “NotReady”. This is due to the fact that Kubernetes itself doesn't
handle networking between pods by default.

In our case we will use Calico as plug-in to ensure a proper networking. Thanks to this step,
nodes will be able to communicate effectively and the cluster work as intended. To
address this, we'll apply Calico on the master node using the next command, which will
enable proper networking and allow the nodes to transition to the "Ready" state.

kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml

By running kubectl get pods -A, we get the list of pods from all namespaces in the cluster,
thus displaying all active services.

Then, we will deploy ClusterIP and NodePort services to understand their usefulness in
managing the network of a Kubernetes cluster.

1) Docker connection
- Docker repository connection
- Secret Docker creation: We create a secret that stores credentials to allow

Kubernetes to access private Docker images in the Docker Hub repository

$ kubectl create secret docker-registry repo-secret --docker-

username=<your_username> --docker-password=<your_password> --docker-

email=<your_email>

- Secret verification: This command allows to verify that the secret has been created
and to see the details in YAML format.

https://docs.projectcalico.org/manifests/calico.yaml
mailto:--docker-email=jean.cedricsanou@gmail.com
mailto:--docker-email=jean.cedricsanou@gmail.com

2) Application deployment with ClusterIP
- Labels application on nodes: We add labels to nodes to identify and organize them.

This makes it easier to select specific nodes when deploying applications in
Kubernetes.
$ kubectl label node worker1 PoP=space_1

$ kubectl label node worker2 PoP=space_2

- ClusterIP service deployment: The resources defined in the ClusterIP file are
deployed
$ kubectl apply -f ./ClusterIP

- Pods verification: This is to check if the pods were deployed correctly and where
they are located (Pending state).

- Services verification: Display all active services in cluster.

- Service inspection: Provides in-depth details about the service, including
endpoints, which show the IP address of pods accessible through this service.

On each address on Endpoint, an application is running.

- Service connection: We send an HTTP request to one of the service endpoints to
verify that the application responds correctly.

- Pod test creation: Pod base on Nginx image to test network access
$ kubectl run testpod --image=nginx

- Pod test access: Open an interactive shell inside the pod to perform tests from it.
$ kubectl exec -it testpod – bash

- Curl request : We rerun the HTTP request, but this time from inside the test pod, to

check if the connectivity between pods is functional.
- Delete all ressources: We remove all resources deployed for the ClusterIP service

to clean up the environment before moving to the NodePort service.
$ kubectl delete -f ./ClusterIP

3) NodePort service deployment

- Deploy NodePort: This command deploys the resources defined for the NodePort
service. A NodePort service exposes an application outside the cluster by assigning
a port on each node in the cluster.
$ kubectl apply -f ./NodePort

- Pods check: Checking that pods has been deployed correctly
$ kubectl get pods -o wide

- Service verification: Lists the services including the NodePort and shows details like
node IP and access port.
$ kubectl get services -o wide

- NodePort inspection: We check the details of the NodePort service, especially the
port assigned by Kubernetes to access the application from outside.
$ kubectl describe services name_of_service

- Connectivity test: We make an HTTP request to the node IP with the assigned port to
verify that the application is accessible from outside the cluster.
$ curl http://node_1_ip:NodePort_value/

- Delete Resources: We clean the environment by removing all resources related to
the NodePort service.
$ kubectl delete -f ./NodePort

Conclusion

To conclude, this project set up and tested network connectivity between a virtual machine
(VM), Docker containers, and the OpenStack environment. We used NAT to ensure
bidirectional communication, configured port forwarding rules, and successfully tested
SSH access. Duplicating VMs, provisioning Docker containers, and creating a network
infrastructure in OpenStack demonstrated the flexibility of virtualized systems.

	Theoretical part
	Practical part
	a) VM Connection
	Fifth part: Docker containers provisioning

