INSTITUT NATIONAL
‘ DES SCIENCES

APPLIQUEES

TOULOUSE

Cloud Computing

Chanfreau Cedric
Boukouiss Samia
51SS

15/10/2024

Lab 1: Introduction to Cloud Hypervisors

Objectives 1 to 3:

Theoretical part

1. Similarities and differences between the main virtualisation hosts (VM et CT)

M~

Hypervisor (Type 2)
Host 0S
Server

Host 0S

Server

Figure 1: VM vs CT

We will compare the two types of hosts based on two perspectives: from an application
developer’s point of view, and from an infrastructure administrator point of view.

From an application developer’s :

Virtual Machine

Container

Virtualization cost, taking into
consideration memory size
and CPU

It requires more memory, as
each VM includes its own
OS. It's more expensive to
virtualize because it emulates
an entire machine on the
hardware level.

It requires less memory
because the CT doesn’t
duplicate the OS and the
application is bundled to run
across various environments.
This makes it lightweight and
cheaper to host.

Usage of CPU, memory and
network for a given
application

Higher CPU overhead due to
the emulation of hardware
and presence of multiple OS
instances. So, there is more
control over the allocated
resources

Lower CPU overhead
because they run as
lightweight processes on the
host OS.

Security for the application
(access right, resources
sharing)

More secure because there is
a strong isolation between

Security flaws because
containers share the same
kernel and libraries as the

applications (each VM runs
its own complete OS).

host system (they are more
vulnerable to attacks and
exploits)

Performances (response
time)

Higher response time
because for each operation
we have to regenerate the
environment.

Lower response time, startup
in ms.

Tooling for the continuous
integration support

No widespread development
tools.

It comes with development
kits.

Flexibility, dynamicity

Difficult to modify disk size
and allocated resources for a
VM, and transferring
programs requires more

Easy to adjust allocated
resources for a container or
application, with minimal
code needed to transfer and

effort. deploy work.
From an infrastructure administrator :
1- Developer point of view :
Virtual Machines Containers

VM, though bulkier and less
flexible, are useful for tasks
requiring full machine
emulation or precise network
control. However, due to their
high costs, slow boot times,
and excessive resource
demands, they are often an
impractical choice for most
development needs.

CT offer developers
portability and flexibility,
enabling cost-effective and
efficient application hosting.
Their lightweight nature
allows for resource sharing,
quick startup, and response
times, making them ideal for
testing and deployment.
Additionally, bundled
development kits provide
extra benefits.

2- System Administrator point of view :

Virtual Machines

Containers

VM are valued by system
administrators for their
complete isolation, which
enhances security and
independence, and their
unique OS that provide
specialized tools. Although
they are resource-intensive,
this is typically manageable
for administrators overseeing
large systems with sufficient
resources.

CT present notable
challenges for system
administrators due to security
risks, limited control over
hardware, and restricted
network configurations.
These issues make CT less
suitable for system
administration tasks.

2. Similarities and differences between the existing CT types

Different CT technologies are available in the market (e.g. LXC/LXD, Docker, Rocket,
OpenVZ, runC, containerd, systemd-nspawn). Their respective positioning is not obvious,

but comparative analyses are available online such as:

- LXC is an operating system-level virtualization tool. It allows running multiple
isolated Linux operating system instances on a single Linux host, while sharing the

same kernel.

- Docker is a containerization platform that allows applications to run in isolation.
Unlike LXC, Docker focuses specifically on containerizing applications, rather than

entire operating systems.

8) & ¢ Pod
Linux Containers Docker 1.10 and later
| systemd |
o] o B & £ B

containerd-shim containerd-shim cantainer in
liblxc "
[bk
—
: | lo
Docker Engine §. u
SELinux/AppArmor SELinux/AppArmor

Linux kernel Linux kernel

Pod

systemd |

YA

EG

We define here the criteria we will use to compare the container technologies (CT) :

- Application Isolation and Resources (Multi-tenancy):

It refers to the architecture of the server hosting containers, where a single instance of the

host OS supports multiple tenants (containers).

- Containerization Level (e.g., Operating System, Application):

Containerization packages software and its dependencies, enabling it to run anywhere.

- Tooling(e.g., APIl, Continuous Integration, Service Composition):

It refers to the tools offered with the container service, such as development kits, migration

tools, and custom settings.

Technology Application Containerization level Tooling
Isolation
OS level containers, LxC offers a CLI for
LXC Light Isolation: allowing kernel sharing | container management
Although containers | with the host. and supports APlIs.
share the core, they
remain isolated from
each other, ensuring
adequate security
and stability.
Docker Enhanced Container | Operating system level | Docker is well-known
Isolation provides an | containers, allowing forits user-friendly CLI

additional layer of
security to prevent
malicious workloads
runningin containers
from compromising
Docker Desktop or
the host.

kernel sharing with the
host.

and API. It has strong
CI/CD support with
Docker Compose and
Kubernetes integration.
Docker Compose is
useful for service
composition.

spawning and
running containers
on Linux according to
the OCI
specification.

containers, integrated
in larger systems.

Rocket RKT provides Application-level It features a CLlI for pod-
applicationisolation | containers, with a based deployments and
using proven layered architecture integrates seamlessly
mechanisms such as | allowing for flexibility. with systemd for
Control Groups service.

(Cgroups) and
SELinux, ensuring
that containers runin
protected
environments and
limit their access to
system resources.

OpenVZ Good isolation even if | Application level It offers a variety of
containers share the management tools.
kernel.

runC runCisa CLltoolfor | Application-level It operates with a

command-line interface
and adheres to OCI
specifications for
managing container
lifecycles.

https://rocket.readthedocs.io/en/latest/Documentation/rkt-vs-other-projects/

3. Similarities and differences between Type 1 & Type 2 of hypervisors’ architectures

There are two main types of hypervisors:

https://rocket.readthedocs.io/en/latest/Documentation/rkt-vs-other-projects/

- Type 1 (or “bare metal”)
- Type 2 (or “hosted”)

A Type 1 hypervisor runs directly on the host's hardware, functioning like a lightweight
operating system and itis preferred in enterprise and production environments for its
performance and security.

Userspace Userspace Userspace

Kernel . Kernel Kernel

Vinual 05

Monitor Monitor Monitor

Hypervisor
Hardware

. md S
Men gt s

While a Type 2 hypervisor operates as a software layer on an existing operating system, like
other applications and itis commonly used in desktop and development settings for its

ease of use.
Userspace
Kernel §
Monitor
User process User process Hypervisor
Kernel
Hardware
. <,
AKVM @EmMu ¥
Architecture Performance Use cases
Type 1 (OpenStack)) It usually provides Itis commonly used
It operates ‘E'”eC“V better performance | in enterprise data
on thg ph'yS|cal host by directly centers and cloud
machine’s bare- accessing hardware | environments where
m.etal hardware resources, performance,
without th? need for eliminating the scalability, and
an underlying OS. overhead of an resource isolation
operating system are critical.

layer.

Type 2 (VirtualBox) It runs on top of an It generally has Itis commonly used

existing OS and more overhead than | in desktop or
operates as Type 1 hypervisors | developer
applications or because it depends | environments where
processes within on the host OS to performance is less
that traditional OS. | manage hardware critical.

resources.

Practical part

Objectives4to 7 :

In this part, we will use the VirtualBox hypervisor (type 2) in NAT mode and set up the
network to enable two-way of communication with the outside.

First part: Creating and configuring a VM
- Open VirtualBox
- Unzip archive
- Create and configure a new VM
- LaunchtheVM

Second part: Testing the VM connectivity
a) VM Connection

Once logged in, we used the ifconfig command in the VM terminal to identify the assigned
IP address:

1 osboxes@osboxes: ~/Desktop

5 $ ifconfig
docker®: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:10:08:05:9b txqueuelen ® (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors ®© dropped ® overruns @& frame 0
TX packets ® bytes @ (0.0 B)
TX errors @ dropped ©® overruns ©® carrier @ collisions @

: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.255.08 broadcast 10.0.2.255
inet6 feBO::e684:9549:3e7:5f73 prefixlen 64 scopeid @x20<link>
ether 08:00:27:7f:16:43 txqueuelen 1000 (Ethernet)
RX packets 28284 bytes 42401574 (42.4 MB)
RX errors © dropped ® overruns © frame 0
TX packets 1435 bytes 120516 (120.5 KB)
TX errors @ dropped ©® overruns ® carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.8.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host=>
loop txqueuelen 1800 (Local Loopback)
RX packets 241 bytes 19981 (19.9 KB)
RX errors © dropped @ overruns @ frame ©

NAT Addres: 172.17.0.1
Virtual Machine Address: 10.0.2.15

Loopback address : 127.0.0.1

EN Windows PowerShell =

Host-0nly Network

Host Machine associated to VirtualBox Host Only-Network: 192.168.56.1
Address Ethernet Interface of Host: 10.1.5.89

b) Connectivity Verification
In this part, we tested the different connectivity between each component:

- Vm & Host Machine: Ping Ok

: $ ping 192.168.56.1
PING 192.168.56.1 (192.168.56.1) 56(84) bytes Df data
64 bytes from 192.168.56.1: icmp_seq=1 ttl=127 - ms
64 bytes from 192.168.56.1: icmp_seg=2 ttl=127 ti 5 ms

64 bytes from 192.168.56.1: icmp_seq=3 ttl=127 ti - ms
64 bytes from 192.168.56.1: icmp_seqg=4 ttl=127 ti .12 ms
64 bytes from 192.168.56.1: icmp_seq=5 ttl=127 time=0.885 ms
.P'.c

- Host Machine <~ Nat/VM: Ping Failed
PS U:\> ping 18.€

EH-Hl d!une requéte i 16.8.2.15% avec 32 octets de données

Ping pour

uete

demand:s
demande .
demande dépassé.

To conclude those tests, it was not possible to ping the host machine with the VM because
of the NAT that is between, and the address is not routable. Whereas the opposite was
possible.

To resolve this issue, a solution would be to use a port forwarding rule. Allowing to ensure
the communication by redirecting request from host to any port configured inside the VM.

Third part: Set up the “missing” connectivity

To enable communication between the host machine and the VM in NAT mode, we can
configure port forwarding in VirtualBox

By specifying that all data arriving on the physical machine at a specific port (1234) is
destined for the VM port 22.

@ Régles de redirection de ports 7

Nom Protocole IP hate Port hote IP invite Port invité

{ TCP 1234 22

After this configuration, we installed openssh on VM to test thanks PuTTy that the
connection was well established.

de données :

approximative
Minimum = @ms, Maximum = @ms,

Fourth part: VM duplication
To create a new clone with the same disk file, here is the command we used:

PS C:\Program Files\Oracle\VirtualBox> .,«’\-‘BoxManage.exe clonemedium

0%. ..

Projet e + B . “
<« ™ C (J > Téléchargements > Projet > Rechercher dans: Projet -
® Nouveau Tl Trier = Afficher s (B Détais

% Accueil Nom Modifié le Type il
| Galerie Aujourd hui

W Ubuntu 22.04 (64bit)-copy.vdi Virtual Disk Image

W Ubuntu 22.04 (64bit)vdi Virtual Disk Image

&M Bureau

D Ubuntu 22,04 (64bit).7z 7-zip.7z

{ Teléchargement

1. Docker Containers Setup:
- Update existing list of packages:

B S sudo apt update

[sudo] password for osboxes:

Get:1 https://download.docker.com/1linux/ubuntu jammy InRelease [48.8 kB]
http://security.ubuntu.com/ubuntu jammy-security InRelease [129 kB]
http://us.archive.ubuntu.com/ubuntu jammy InRelease
http://us.archive.ubuntu.comfubuntu jammy-updates InRelease [128 kB]
https://download.docker.com/1linux/ubuntu jammy/stable amd64 Packages [40.7

Get:2
Hit:3

Get:4
Get:5
kB]
Get:6
Get:7

http://us.archive.ubuntu.com/ubuntu jammy-backports InRelease [127 kB]
http://security.ubuntu.com/ubuntu jammy-security/main amd64 Packages [1,84

- Install prerequisite packages which let apt use packages over HTTPS:

B S sudo apt install apt-transport-https ca-certificates
curl software-properties-common
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
libcurl4 python3-software-properties software-properties-gtk
ubuntu-advantage-tools ubuntu-pro-client

- Addthe GPG key for the official Docker + Docker repository to APT sources:

A $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o Jusr/share/keyringd
docker-archive-keyring.gpg

B $ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.
g] https://download.docker.com/linux/ubuntu $(1sb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > fdev/

- Update existing list of packages again for the addition to be recognized:

B S sudo apt update
[sudo] password for osbox
Get:1 https://download.docker.com/1linux/ubuntu jammy InRelease [48.8 kB]
Get:2 http://security.ubuntu.comfubuntu jammy-security InRelease [129 kB]
Hit:3 http:/fus.archive.ubuntu.com/ubuntu jammy InRelease
Get:4 http://us.archive.ubuntu.com/ubuntu jammy-updates InRelease [128 kB]

Get:5 https://download.docker.com/1linux/ubuntu jammy/stable amd64 Packages [40.7
kB]
Get:6
Get:7

http://us.archive.ubuntu.com/ubuntu jammy-backports InRelease [127 kB]
http://security.ubuntu.com/ubuntu jammy-security/main amd64 Packages [1,84

- Make sure we will install from Docker repository instead of Ubuntu repository:
- Install Docker + Checkitis running:

docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
since Tue 2024-10-01 10:08:12 EDT; 1min 57s ago
docker.socket
: https://docs.docker.com
: 12225 (dockerd)

8

7.7TM

715ms

[system.slice/docker.service

12225 Jusr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

Memory:
CPU:
CGroup:

osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes

lines 1-22/22 (END)

dockerd[12225]:
dockerd[12225]:
erd[12225]
dockerd[12225]:
dockerd[12225]:

dockerd[12225]:
dockerd[12225]:

2024-10-01T10

|
!
Falal
2
2.
2
7
2

N

.593695091-04:
.B69972651-04:
.908798973-04:
.432100563-04:
537547171-04:
-537965299-04:
.635943653-04:
.639103029-04:
.775608925-04:

ee"
00"
06"
00"
0e"
0"
06"
ee"
00"

level=info
level=info

level=info
level=info

systemd[1]: Started Docker Application Container Engine.

msg="detected 127.0.0.53 namese
msg="[graphdriver] using prior §
msg="Loading containers: start.’
msg="Default bridge (docker®) ig
"error locating sandbox i
msg="Loading containers: don
msg="Docker daemon" commit=
msg="Daemon has completed i
msg="API listen on /run/docker.q

Installing Docker now gives us not just the Docker service (daemon) but also the docker

command line utility, or the Docker client.

Fifth part: Docker containers provisioning

We can now provision Docker nodes.

$ docker info

Client:
Context: default
Debug Mode: false
Plugins:
app: Docker App (Docker Inc., v@8.9.1-beta3)

buildx: Docker Buildx (Docker Inc., v@.9.1-docker)
scan: Docker Scan (Docker Inc., v8.17.0)

Server:
ERROR: Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/d
Fdocker.sock/v1.24/info": dial unix /var/run/docker.sock: connect: permission denied
printing info

- Pullan Ubuntu image:

g $ sudo docker pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu
dafa2b8c44d2: Pull complete
Digest: sha256:dfc10878be8d8fc9c61cbff33166cb1d1fe44391539243703c72766894FaB34a
Status: Downloaded newer image for ubuntu:latest
docker.io/library/ubuntu:latest

- Execute Ubuntuinstance image CT1:

A S sudo docker run --name ctl -it ubuntu
docker: Error response from daemon: Conflict. The container name "/ctl" is already in use by container "bc306bc8711a81a8244b0
206b97844ba49dan25861fa7b1750ad462e01c939". You have to remove (or rename) that container to be able to reuse that name.
See 'docker run --help'.

- Install required connectivity testing tools:

B $ sudo apt-get -y update && apt-get -y install net-tools iputils-ping
Hit:1 http://us.archive.ubuntu.com/ubuntu jammy InRelease

Hit:2 http://security.ubuntu.comfubuntu jammy-security InRelease

Hit:3 http://us.archive.ubuntu.com/ubuntu jammy-updates InRelease

Hit:4 http://us.archive.ubuntu.com/ubuntu jammy-backports InRelease

Hit:5 https://download.docker.com/1linux/ubuntu jammy InRelease

Reading package lists... Done

E: Could not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied)

E: Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), are you root?

- Checkthe connectivity:
o Ifconfigto get IP Address = 172.17.0.2:

root@lbod6ed3199b: /# ifconfig
etho: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 172.17.8.2 netmask 255.255.0.8 broadcast 172.17.255.255
ether 02:42:ac:11:00:02 txqueuelen © (Ethernet)
RX packets 2292 bytes 25252917 (25.2 MB)
RX errors @ dropped @ overruns ©@ frame @
TX packets 1231 bytes 71363 (71.3 KB)
TX errors @ dropped @ overruns @ carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.6.0.1 netmask 255.0.0.0
ineté ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 10868 (Local Loopback)
RX packets © bytes 6 (0.0 B)
RX errors @ dropped 6 overruns 0@ frame 8
TX packets ©® bytes @ (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions @

Each Docker container use a virtual network interface (“bridge”) where they get a distinct
IP address which is part of an internal subnet managed by Docker.

o Pinglinternet resource from Docker was a success:

root@lbedeed3199b: /# ping google.com
PING google.com (142.250.200.238) 56(84) bytes of data.
64 bytes from mrs@8s18-in-f14.1e100.net (142.250.200.238): icmp_seq=1 ttl=112 time=7.10 m

s
64 bytes from mrs@8si18-in-f14.1e100.net (142.250.200.238): icmp_seq=2 ttl=112 time=7.50 m

s
64 bytes from mrs@8si18-in-fi14.1e100.net (142.250.200.238): icmp_seq=3 ttl=112 time=7.44 m
s
aC

- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2085ms
rtt min/avg/max/mdev = 7.097/7.344/7.496/0.176 ms

g1badssd210ab - /o

The Docker container was able to contact an external resource on the internet, proving that
the NAT network configured for Docker allows the container to access the outside.

O

Ping VM from Docker was a success too:

root@ibedéed3199b: /# ping 172.17.0.2

PING 172.17.0.2 (172.17.08.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.028 ms

64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.055 ms

!‘.C

--- 172.17.0.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1011ms

Docker can contact the VM hosting the container, which demonstrates that the internal
communication between the two environments (Docker container and VM) works.

O

Ping the Docker from the VM worked well:

1% ping 172.17.0.2
PING 172.17.8.2 (172.17.0.2) 56(84) bytes of data.
from 172.17.0.2: icmp_seq=1 ttl=64 time=0.063 ms
from 172.17.0.2: icmp_seq=2 ttl=64 time=0.081 ms
from 172.17.0.2: icmp_seq=3 ttl=64 time=0.081 ms

- 172.17.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2052
rtt mtn/avg/max}mde: = 0.063/0.075/0.081/0.008 ms

Similarly, the VM was able to ping the Docker container, showing successful bi-directional
connectivity between the VM and Docker.

All connectivity tests passed, showing that the network configuration between Docker, the
host machine (VM), and Internet access was done correctly.

- Execute a new instance (CT2) of the ubuntu Docker:

Start a new Ubuntu container and configure port forwarding to allow SSH access from the
host via port 2233

B $ sudo docker run --name ct2 -p 2223:22 -it ubuntu

root@af5c63e5cif3: f#

- Snapshot of VT2:
Saves the current state of the container as a Docker image for later reuse or sharing.

It can be useful to commit a container's file changes or settings into a new image. This lets
you debug a container by running an interactive shell or export a working dataset to
another server.

By default, the container being committed, and its processes will be paused while the
image is committed.

% sudo docker commit af5c63e5cif3 cedric:nano
shaz256:12cec668724Ta%e8f2371683b574afd6d0c4801ab20a612c5e7b80d15¢c986¢cel

:$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES
af5c63e5c1f3 ubuntu "/bin/bash" 8 minutes ago Up 8 minutes 0.0.0.0:2223->22ft
cp ct2

- Stop and terminate CT2:

Stops the CT2 container and deletes it to free up resources.

:-§ sudo docker rm af5c63e5cif3
af5c63e5cif3
:-$ sudo docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

- Listthe available Docker images in the VM:

Shows all Docker images stored locally on the VM to see which ones are ready to use.

: S sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
cedric nano 12cec668724F 4 minutes ago 1260MB
ubuntu latest ble9cef3f297 4 weeks ago 78.1MB
ubuntu <none= 216c552easba 24 months ago 77 .8MB

- Execute a new instance CT3 from the previous snapshot:

Starts a new CT3 instance based on the previous image, retaining the installed
environment and tools (like Nano).

udo docker run --name ct3 -it cedric:nano

5 s
Yk

root@®3b5418abfo6

- Make a proper recipe with DockerFile:

FROM ubuntu

RUN apt update -y

RUN apt install -y nano
CMD ["/bin/bash"]

B S sudo docker build -t cedric:nano -f myDocker.dockerfile .
[+] Building 24.8s (7/7) FINISHED

With the automated script (Dockerfile), we created a custom Docker image with project-
specific dependencies and configurations.

F S sudo docker images
REPOSITORY TAG IMAGE ID CREATED
cedric nano 715e6fd7b369 days ago
=none:= =none: 809feb5d8c32 days ago

=none= =none= 12cec668724f days ago
ubuntu latest ble9cef3f297 weeks ago
ubuntu <none: 216c552easba years ago

Objectives 6 and 7:

First Part: CT creation and configuration OpenStack

- OpenStack Connexion/Authentication:

[o | Dlopenstack - sssare
|] =
I/ . Vue d'ensemble
openstack.
Se connecter
Domaine
INSA
Nom d'utilisateur
chanfreau
Mot de passe
®

- Creation of a VM / private network and gateway

[lopenstack = .sssare-
¥ Projet | Compuie / Instances

— . Instances *

182 168.37.75

1D de Mnstance ==

Status. Availability Zone Task Power State Age Actions
Corersen rova S .. Omeso
Géneraton

Créer un réseau

Sous-réseau

Réseau

Nom du sous-réseau

Adresse réseau @

Détails du sous-réseau

12.7.5.32/24)

Version IP

IPv4

Adresse IP de la passerelle @

O Désactiver la passerelle

Crée un sous-réseau associé a un réseau. Vous devez
entrer une "Adresse réseau” et une "Adresse IP de la
passerelle” valide. Si vous n'entrez pas d"Adresse IP de
la passerelle”, |a premigre valeur (IP) de voire réseau sera
assignée par défaut. Si vous ne souhaitez pas de
passerelle, veuillez cocher "Désactiver la passeralle”.
Cliquez sur I'onglet "Détails Sous-réseaux” pour
configurer des options avancées.

A r7/0°LE89T TRT

& chanireau +

YOS LT

A VM cannot be created from a public network for different reasons, so we created a private

network:
O

Network separation: The private network allows to isolate VMs from other networks.

Indeed, this means that VMs can communicate with each other without being
directly exposed to external threats or unauthorized traffic from the Internet.

o

Traffic control: We can better manage incoming and outgoing traffic. The router

plays an important role because it controls the flow between private and public

network.

To allow ICMP traffic (ping) and SSH, we added three new security rules:

Gérer les regles du groupe de sécurité : default
(b4181ac3-3b34-41dd-8430-9e1d7b381ed6)

Aifichage de 7 éléments

O Direction Ether Type 1P Protocal Port Range
O Sorie 1Pv4 Tous Tous

o [Sortie 1Pua ICMP Tous

O Sortie 1Pv6 Tous Tous

O Entrée 1Pva Tous Tous

O | Entrée 1Pv4 IcMP Tous

O [Eiiige 1Pv4 TCP 22 (SSH)

O Entrée 1Pv6 Tous Tous

Remote IP Prefix

0.0.0.0/0

0.0.0.0/0

10

0.0.0.0/0

0.0.0.0/0

+ Ajouter une régle

Remote Security Group Deseription

default

default

'@ Supprimer les Régles

Actions

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Second Part: Connectivity test

First, we associated an flotant IP for the VM to access the VM from the outside thanks ssh.
IP address from VM: The IP address displayed on the dashboard:

- 192.168.37.28: Public address useful to access the VM from outside.
- 12.7.5.176: Private address to communicate with another machine of the private network

O Instance Name Image Name IP Address

o VM Ubuntu4CLY 12.7.5.176, 192.168.37.28

Here, the router is important because it allows us to link the private network where the VM is
connected and the public network.

Connectivity Test:

Ping Google from the VM indicates that the network configuration is properly set up, allowing the
VM to communicate with external tools.

user@tutorial-vm:~$ ping www.google.fr

PING www.google.fr (142.251.37.35) 56(84) bytes

64 bytes from mrse9s13-in-f3.1e100.net (142.251.37. icmp_seq=1 ttl=113 time=6.65 ms
64 bytes from mrs09s13-in-f3.1e100.net (142.251.37. icmp_seq=2 ttl=113 time=6.46 ms

64 bytes from mrse09s13-in-f3.1e100.net (142.251.37. icmp_seq=3 ttl=113 time=6.49 ms
AC
- www.google.fr ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, 2003ms
rtt min/avg/max/mdev = 6.465/6.536/6.651/0.124 ms

Pinging the VM from the desktop verifies that incoming connections to the VM are working as
intended. This indicates that the VM's firewall and security group settings are appropriately
configured to allow traffic from the desktop.

3 $ ping 192.168.37.28
PING 192.168.37.28 (192.168.37.28) 56(84) bytes of data.
64 bytes from 192.168.37.28: icmp seq=1 ttl=61 time=2.57 ms
64 bytes from 192.168.37.28: icmp seq=2 ttl=61 time=0.983 ms
64 bytes from 192.168.37.28: icmp seq=3 ttl=61 time=0.906 ms
64 bytes from 192.168.37.28: icmp seq=4 ttl=61 time=0.771 ms
26

- 192.168.37.28 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3068ms
rtt min/avg/max/mdev = 0.771/1.306/2.567/0.731 ms

The ability to ping the desktop from the VM confirms that the internal network configuration is
functioning correctly. This ensures that the VM can communicate with other devices on the same
network.

[] chanfreau@insa-10584: ~/Bureau — | *
Fichier Edition Affichage Recherche Terminal Aide
: $ ifconfig
eth®: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 18.1.5.89 netmask 255.255.8.08 broadcast 18.1.255.255
inet6 feB80::6dae:1d54:7002:649b prefixlen 64 scopeid 8x28<link=>
ether 48:4d:7e:f4:f9:46 txqueuelen 1808 (Ethernet)
R¥ packets 1598141 bytes 1885073789 (1.8 GB)
R¥ errors @ dropped 511320 owverruns @ frame 0
TX packets 564894 bytes 612290745 (612.2 MB)
TX errors @ dropped ® overruns ® carrier ® collisions @
device interrupt 20 memory 0xf7100000-f7120000

:~% ping 18.1.5.89
PING 10.1.5.89 (19.1.5.89) 56(84) bytes of data.
64 bytes from 18.1.5.89: icmp_seqg=1 ttl=62 time=0.591 ms
64 bytes from 18.1.5.89: icmp_seq=2 ttl=62 time=0.667 ms
64 bytes from 18.1.5.89: icmp_seqg=3 ttl=62 time=0.575 ms k
~C
--- 10.1.5.89 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2886ms
rtt min/avg/max/mdev = 8.575/8.611/0.667/0.0840 ms

Network Topology:

The network topology diagram allows to visualize the different networks, routers and instances
deployed in the infrastructure. This gives a clear overview of the connections and routing. By
analysing this diagram, we can check how the VMs are connected to each other and to the
outside.

Problem Possible:

A problem can be the absence or misconfiguration of the connection between the private network
and the public network. If the instances are only connected to a private network without a gateway
to the public network or the Internet, it will not be possible to access the outside or be accessible
from it.

In our case, the problem could come from the absence of a correctly configured router to connect
the private and public networks, or from bad routing between the subnets.

New topology creation:

- Create a new network with the gateway definition (192.168.37.1)

- Create a new VM by selecting private network

- Make sure about the coherency between private network address and router.

- Create a new router that will be the role of link between private and public network.

- Create a floating IP to be able to access the VM by the outside.

- SSH connectivity to the VM.
As SSH connectivity is working, this proves that the network configuration, router, and floating IP
are configured correctly.

Third part: Snapshot, restore and resize a VM

Resize a running and a shutdown VM was not possible, and an error occurred because of the
rights access.

Danger: Une erreur s'est produite. Veuillez
reessayer ultérieurement.

For the two previous tests, the limitation highlighted that to resize a VM, some administrative
rights are necessary. A solution could be to give user role allowing some operations of resources
management. This will allow more users to benefit from the flexibility of virtualization without
compromising security.

By creating a snapshot of the VM, we were able to capture the current state of the system,
including all files, configurations, and software installed at that time.

Therefore, if changes are made to the VM after the snapshot is created, those changes will not
be present in the snapshot, which could be useful for reverting to a previous state in case of a
problem.

Lancer Instance

Les gabarits sont en place pour gérer |a taille de la capacité de stockage, de mémoire et de calcul d'une instance.
Alloue
Nom VCPUS RAM Total Disque Disque Racine Disque Ephémére Publique
[s] Sélsctonner un éément depus les ékéments disponibes ckdessous
éseaux w Disponible Sélectionnez-en une
Q quer ici pour les filtre 1€ @ plein taxte x
Nom vcrus mam ol Disque Disque Publique
Disque Racine Ephémére
¥ nano 1 512Mo 8Go 8 Go 0Go Oui L]
> tiny 1 512Mo 10 Go 10 Go 0Go Oui *
> smali2 1 1Go 20 Go 20 Go 0Go QOui *
> medium 2 2Go 40 Go 40 Go 0Go Qui L
> large 2 4 Go 40 Go 40 Go 0Go Oui +

> small 1 4Go 20 Go 20 Go 0Go Oui *

When restoring the VM from the latest snapshot, we were able to find the exact state of the
machine at the time the snapshot was created and also select new size for the VM. This allowed
us to quickly recover a working system after unwanted changes or crashes

Objectives 8 & 9:

First Part: OpenStack client installation

- OpenStack client installation on Ubuntu VM.
- Configure the client with the command that loads the variables from the RC file into our
current terminal session, enabling communication with the OpenStack environment.

‘ Télécharger le fichier RC d'OpenStack ~ ‘

& Fichier OpenStack clouds.yaml
& Fichier OpenStack RC

- Start OpenStack client, this opens the OpenStack CLI.

- To get a list of available commands and options within the OpenStack CLI, we displayed
the help menu by typing with help command.

- To get more detailed help on a specific OpenStack command, such as how to list projects,
we appended project list —help.

Second Part: Web 2-tier application topology and specification

The application includes Node.js microservices to perform arithmetic operations: addition,
subtraction, multiplication, and division, as well as a calculator service that handles HTTP
requests.

Instances

ID de l'instance = = Filtrer & Lancer une instance Plus d'actions =

Affichage de 6 éléments

Instance Image Availability

IP Address Flavor . Status Task Power State Age Actions
Name Name Pair Zone
Ubunt En
- 5110 mall2 - Activ v A inuts ré i i -
O LACLY 12751 small2 Active nova Aucun L onnement 21 minutes Créer un instantané
O Caleulato Ubunt 12.75.104 small2 - Active nova Aucun En . 22 minutes Créeruninstantané | =
r udCLV fonctionnement
] Ubunt - . - . B En N -) A
o LACLY 12.7.5.221 small2 - Active nova Aucun fondtionnement 23 minutes Créer un instantané
. Ubunt - . - . B En P -) .
] LACLY 12.7.5.138 small2 Active nova Aucun fonctionnament 24 minutes Créer un instantané
Ubunt En -
+ 12.7.5.250 small2 - Active nova Aucun 25 minutes ré i & | -
g udCLV - A fonctionnemeant Creeruninstantans
o v Ubunt 12.7.5.176 emall2 Active nova Aucun En 1 heurs, ore instantand
mall2 - Activ ; r -
udCLV 192.168.37.28 " fonctionnemant 28 minutes Serun insisnians

To deploy each microservices on the VM multiple steps was required:

- Instance connection: Here we used ssh for ease of use

$ ssh user@192.168.37.174 -p 22

- Dependencies installation: Installation of Nodejs (microservices execution), npm (Nodejs
dependencies management) and curl (HTTP request).

$ sudo apt install nodejs
$ sudo apt install npm

Microservices installation: Download JavaScript files inside VM of the microservice we
want to deploy.

user@tutorial-vm:~$ wget http://homepages.laas.fr/smedjiah/tmp/SumService.js

URL transformed to HTTPS due to an HSTS policy

--2024-10-08 13:11:38-- https://homepages.laas.fr/smedjiah/tmp/SumService.js
Résolution de homepages.laas.fr (homepages.laas.fr).. 195.83.132.137, 2901:660:66
02:2::8489

Connexion a homepages.laas.fr (homepages.laas.fr)|195.83.132.137|:443.. connecté.

requéte HTTP transmise, en attente de la réponse.. 200 OK

Taille : 723 [application/javascript]

Enregistre : «SumService.js»

SumService. js 723 --.-KB/s ds Os

2024-10-08 13:11:38 (55,6 MB/s) - «SumService.js» enregistré [723/723]

Microservice startup: Script execution to listen request inside the specified port.

user@tutorial-vm:~$ node SumService.js

Listening on port : 50001

Launch operations: We used curl in the VM1 to send a POST request on each service:

o SumService
-d "2 3" -X POST http://12.7.5.258:580801

:~$ node SumService.js

Listening on port : 58681
New request :
A =2

E]
B

=5

ning on port

request

VM1

o MulService:

*)

n port

VM1

o DivService:

Listening on port

v request

15

VM1

The micro-services operations work, we can now try the Calculator Service :

- IP adresses modification in the Calculator Service code

BN user@tutorial-vm: ~

GNU nano 2.9.3 Calculators

Port of SumService : 50001
Port of SubService : 50002
Port of MulService : 50003
Port of DivService : 50004

- Add the missing “sync-request” module and re start the services

:~$ curl -sL https://deb.nodesource.com/setup_16.x | sudo -E bash |

:~% npm install sync-request

$ sudo apt install nodejs

o Calculator Service :

:~$ curl -d "(5+6)*2" -X POST http://12.7.5.104:80

:~$ sudo node CalculatorService.js
Listening on port : 8@
New request :
(5+6)*2 = 22

Routeur

7.5 110"

IIi'

Instance

Ii’

12.7.510. alculato.

Instance

Iii

Instance

i@

Instance

Iii

Instance

12.7.5.176 VM1

IIi’

Instance

ERONGETIRTT

YIS LT

To communicate with the Calculator Service from the public network, we have to :

- Modifiy the Calculator Service port (it should be between 50000 and 50050) :

http = require ();
request = require(

PORT = process.env.PORT ||

SUM_SERVICE_IP_PORT
SUB_SERVICE_IP_PORT
MUL _SERVICE_IP_PORT
DIV_SERVICE_IP_PORT

- To add a security rule : TCP (input/output) at port 50010 :

Ajouter une regle Ajouter une regle

Regle *
Regle * 9
. ~ . Régle TCP personnzlisée -
Régle TCP personnalisée -
Description © Description @
P A
Direction Direction
Sortie - Entrée -
Ouvrir * Ouvrir *
Port v Port -
Port” @ Port* ©
50010 50 :'l

:~% sudo node CalculatorService.js
Listening on port : 56018

New request
(5+6)*2 = 22

Calculator Service

S curl -d "(5+6)*2" -X POST http://192.168.37.14:50010

result = 22

Extern VM

Objectives 10 and 11 :

Part one and two: The client requirements and target network topology & Deployment of
the target topology

Let us consider a client that would like to deploy a Web application over a specific network
topology. The latter provides secured access to intermediate services. In addition, the same client
did specify that hosting VMs should be split between 2 IP networks.

For this, we have to:
- Create a new private network
- Create a new VM in the 2" private network (Calculator Service)
- Delete the old Calculator Service
- Delete the Gateway interface to the 1% private network and add it to the 2" private network
- Create a router between the 1% and 2" private network
- Define a traffic route between the two private networks

Routeur

0.0 1-35- alculato..
Instance

Routeur

JlomjeN ejeald

Instance

O b0 L8961

yenoonel
yensLel

We defined the traffic route between the two private networks. It redirects the front end
machine to the network 2 anytime it tries to communicate with one of the microservices.

user@tutorial-vm:~$ sudo route add -net 12.7.5.0/24 gw 13.0.0.5
user@tutorial-vm:~$ route

Table de routage IP du noyau

Destination Passerelle Genmask Indic Metric Ref
default host-13-0-0-1.1 uG 160]
12.7.5.0 host-13-8-0-5.1 UG 0 0
13.0.0.0 0.0.0.0 1] &} i
169.254.169.254 13.6.0.3 UGH 100 i

Pd P P
L bn e

W bn b &

Ping calculator from net2 from a microservice/desktop ==> OK

PS U:\Windows\Bureau> ping 192.168.37.117

Envoi d’une requéte 'Ping' 192.168.37.117 avec 32 octets de données :
Réponse de 192.168.37.117 : octets=32 temps=2 ms TTL=62
Réponse de 192.168.37.117 : octets=32 temps=1 ms TTL=62
Réponse de 192.168.37.117 : octets=32 temps=1 ms TTL=62

Statistiques Ping pour 192.168.37.117:
Paquets : envoyés = 3, recus = 3, perdus = @ (perte 8%),

user@tutorial-vm:~$ ping 13.0.0.166

PING 13.0.0.166 (13.0.0.166) 56(84) bytes of data.

64 bytes from 13.0.0.166: icmp_seq=1 tt1l=63 time=3.40 ms

64 bytes from 13.0.0.166: icmp_seq=2 ttl=63 time=1.22 ms

64 bytes from 13.0.0.166: icmp_seq=3 ttl=63 time=1.25 ms

e =

--- 13.0.0.166 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2003ms
rtt min/avg/max/mdev = 1.227/1.961/3.404/1.020 ms

Additional Part:

The goal of the exercise is to configure the microservices so that they are accessible from
outside the network or from another VM located in a different private network.

- Configure Private Network 2 to allow internal connectivity between VMs, bypassing
the public network.

- Configure security rules to allow internal traffic between VMs on Private Network 2.

- Ensure that the CalculatorService listens on the internal IP address of Private
Network 2 (13.0.0.166) only.

- Testinternal connectivity between VMs via ping and open the microservice to test it.

:~$ sudo node CalculatorService.js
Listening on port : 566011

New request
(5+6)*2 = 22 Calculator

user@tutorial-vm:~5 curl -d "(5+6)*2" -X POST http://13.6.6.166:568011
resullt = 22

VM from private network2

Automation Part:

The goal is to create a Python script capable of automatically deploying and configuring
networks, instances and routers in OpenStack from a configuration file in JSON format.

- JSON file creation: it contains complete OpenStack network configuration, included
network, router and instances to be deployed. This file serves as a data source for the
Python script that will interpret and apply this configuration.

: "private_network",
: "12.7.5.8/24",
: "12.7.5.1",
"public", [
"192.168.37.0/24", {
: "192.168.37.254", : "Calculator”,
"external” : "13.0.8.166",
: "private_network_2",
: "small2®,

"private_network_2", : "Ubuntu4CLV"
"13.0.0.8/24",
: "13.0.0.1",
Bl : "instance_minus",
: "router_1", 3 CIA 7B aE
: ["13.0.0.5", "12.7.5.1"] : "small2",
: "Ubuntu4cCLv"

- Python Script: itis responsible for reading the JSON file and then using the
OpenStack API to configure the resources described in that file.

o OpenStack Connection
o JSON reading

open("network_config.json", "r") as

= json.load(f)

o SubNet creation

["networks™]:
penstack network create { ["name"
penstack subnet create --network { ubnet-range { 'ci }{ ['name’]}_subnet")

o Instances creation

"networ

["routers™]:
run_command(f"openstack router create { ["name"']}")

in ["external_network"]:
f"openstack router set --external-gateway {

["internal_networks"]:
run_command (f"openstack router add subnet { ["name’]} { }_subnet™)

Lab 2: Orchestrating services in hybrid cloud/edge
environment

tiny.cc/TP_EdgeComputing

In this lab, we will explore implementing services in a hybrid cloud/edge environment using
Kubernetes. The goal is to meet the needs of next-generation autonomous vehicles, which
require real-time interactions with minimal latency to ensure optimal performance.

During this lab, we will configure a Kubernetes cluster spread across three virtual machines,
simulating an intelligent infrastructure. This cluster will allow us to manage and orchestrate
services deployed as Docker containers on different nodes, in order to ensure processing
close to the vehicles and thus maintain very low response times.

We will also look at dynamic migration of services as the vehicle moves, thus allowing
optimized resource management and adaptation to real-time needs.

- Setup cluster K8s
1- Master
2- Worker nodes
- Deploy services
- Manage QoS services (SLA)

SLA

Manager

M K8s /

W w
{Docker} {Docker}

Part 1: Cloud infrastructure setup

In this part we will set up the Kubernetes cluster with 3 running nodes:

- Creation of a novel private network and connect it to the public using a well-configured
gateway, instantiation of the master-node VM and 2 worker nodes VM (Ubuntu_20
cloud image and a medium flavor.):

i

Gateway
Routeur

Instance

O

Instance

Instance

spomjau agad

O FT0LEBIL 6L
FUOG LT

- Generation of 3 floating IP addresses and associate them to the VM:

J IP Address Description DNS Name DNS Domain Mapped Fixed IP Address Pool Status Actions

O 19216837173 Worker 1 12.7 5118 public Active
O 192.168.37.181 Worker 2 12.7.5.90 public Inactif -
O 192.163.37.78 Master 12.7.5.47 public Active

- On each machine some configurations were required:
o New user creation

LUSEr

(1001) with group
Creating home directory Ahomeduser
Cop files from Jetc/skel
HEen

Enter the new g, or press ENTER for the default
Full Mame []:
Room Mumber []:
Work Phone []:
Home Fhone [
Other
=z the inf
root@ubunto: ™

o Setup the SSH connection on the VM. Open the file sshd_config and set
PasswordAuthentication to “yes” using nano editor : nano /etc/ssh/sshd_config

o Once connected with ssh on each VMs, we initialized clusters and changed
host names.

:~% sudo swapoff -a
[sudo] password for user:
; sudo hostnamectl set-hostname Workerl

o Inthe next steps we updated packages, installed curl, got repository key, add
Kubernetes component and marked them as hold to keep them running.

o After, we enabled docker to start, change docker group as cgroup driver
before restarting it.

$ sudo systemctl restart docker
:~% sudo docker info | grep -i cgroup
Driver: systemd
Version: 1
WARNING: No swap limit support
$ sudo modprobe overlay

$ sudo modprobe br_netfilter

% sudo tee /etc/sysctl.d/kubernetes.conf<<EOF
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
net.ipvl.ip_forward = 1

After different commands, in order to properly setup the nodes networking, we had to :

- /usr/lib/systemd/system/kubelet.service.d
SO ol=1al 1 O-kubeadm.confElleR:Te[sRURIETR- - node-ip to the KUBELET CONFEIG ARGS

Wi EREY P of your master ens3 interfacel

EX user@Worker2: fusr/lib/systel X o

GNU nano 4.8 10-kubeadm.conf

Environment="KUBELET_KUBECONFIG_ARGS=--bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.conf --kubeconfig=/etc/kubernetes/kubelet.conf"
Environment="KUBELET_CONFIG_ARGS=--config=/var/lib/kubelet/config.yaml --node-ip='12.7.5.47

EnvironmentFile=-/var/lib/kubelet/kubeadm-flags.env

EnvironmentFile=-/etc/sysconfig/kubelet
ExecStart=
ExecStart=/usr/bin/kubelet $KUBELET_KUBECONFIG_ARGS $KUBELET_CONFIG_ARGS $KUBELET_KUBEADM_ARGS $KUBELET_EXTRA_ARGS

- Get the token to join the cluster that we copied and runned as sudo on each of the
worker nodes.

:/$ sudo kubeadm join 12.7.5.47:6443 --token dcoazc.ivé
3ri9hgpyqsqil --discovery-token-ca-cert-hash sha256:a51fblef6f87301
a7839c558316d2775689e9b36U89f0608c82593962cclf6ch
[preflight] Running pre-flight checks
[preflight] Reading configuration from the cluster...

[preflight] FYI: You can look at this config file with 'kubectl -n

kube-system get cm kubeadm-config -o yaml'

[kubelet-start] Writing kubelet configuration to file "/var/lib/kub

elet/config.yaml"

[kubelet-start] Writing kubelet environment file with flags to file
"/var/lib/kubelet/kubeadm-flags.env"

[kubelet-start] Starting the Kubelet

[kubelet-start] Waiting for the kubelet to perform the TLS Bootstra

p...

This node has joined the cluster:

* Certificate signing request was sent to apiserver and a response
was received.

* The Kubelet was informed of the new secure connection details.

Run 'kubectl get nodes' on the control-plane to see this node join
the cluster.

- Check the status of our cluster by running the following command:

:/$ Kubectl get nodes -o wide
NAME STATUS ROLES AGE VERSION INTERNAL-IP EXTERNAL-IP O0S-IMAGE RERNEL-VERSION CONTAINER-RUNTIME

master NotReady control-plane 5m3s v1.28.1 12.7.5.47 <none> Ubuntu 20.84.6 LTS 5.4.8-163-generic containerd://1.7.12

We notice that the nodes appear when running the kubectl get nodes -o wide command.
However, their status is “NotReady”. This is due to the fact that Kubernetes itself doesn't
handle networking between pods by default.

In our case we will use Calico as plug-in to ensure a proper networking. Thanks to this step,
nodes will be able to communicate effectively and the cluster work as intended. To
address this, we'll apply Calico on the master node using the next command, which will
enable proper networking and allow the nodes to transition to the "Ready" state.

kubectl apply -f https://docs.projectcalico.org/manifests/calico.yaml

:/% kubectl get nodes
NAME STATUS ROLES AGE VERSION
master NotReady control-plane 9mid3s v1.28.1
workerl EET Y <none> 3ml3s v1.28.1
worker2 <none> 3mlls v1.28.1

: s -n calico
No resources found in calico namespace.

:/$ kubectl get pods -A
NAMESPACE NAME STATUS RESTARTS
kube-system calico-kube-controllers-658d97c59c-b2zbz Running
kube-system calico-node-jgsgw Running
kube-system calico-node-k8rfj Running
kube-system calico—node-sxp67 Running
kube-system coredns-5dd5756b68-q7vcs Running
kube-system coredns-5dd5756b68-xv25g Running
kube-system etcd-master Running
kube-system kube-apiserver-master Running
kube-system kube-controller-manager—-master Running
kube-system kube-proxy-7rb8l Running
kube-system kube-proxy-cgqéx Running
kube-system kube-proxy-xhq8d Running
kube-system kube-scheduler-master Running

By running kubectl get pods -A, we get the list of pods from all namespaces in the cluster,
thus displaying all active services.

Then, we will deploy ClusterlP and NodePort services to understand their usefulness in
managing the network of a Kubernetes cluster.

1) Docker connection

- Docker repository connection

- Secret Docker creation: We create a secret that stores credentials to allow
Kubernetes to access private Docker images in the Docker Hub repository

$ kubectl create secret docker-registry repo-secret --docker-
username=<your username> --docker-password=<your password> --docker-

email=<your_email>

- Secret verification: This command allows to verify that the secret has been created
and to see the details in YAML format.

https://docs.projectcalico.org/manifests/calico.yaml
mailto:--docker-email=jean.cedricsanou@gmail.com
mailto:--docker-email=jean.cedricsanou@gmail.com

:/$ kubectl get secret repo-secret —-—output=yaml
apivVersion: vl
data:
.dockerconfigjson: eyJhdXRocyI6feyJodHRwczovl21luZGVULmMRvY2t1lci5Spby92MS8i0OnsidX

Nlcm5ShbWUi01J1lc2VyIiwicGFzc3dvemQi0iJ1lc2VyIiwliYXVeaCI6ImRYTmxX janAxYzJWeSJ9fXe=
kind: Secret

metadata:

creationTimestamp: "2024-16-14T12:56:20Z"

name: repo-secret

namespace: default

resourceVersion: "781"

uid: b738cfod-3dfc-4161-9118-292327Ffff21e
type: kubernetes.io/dockerconfigjson

2) Application deployment with ClusterlP
- Labels application on nodes: We add labels to nodes to identify and organize them.
This makes it easier to select specific nodes when deploying applicationsin

Kubernetes.
$ kubectl label node workerl PoP=space 1

$ kubectl label node worker2 PoP=space 2

- ClusterlP service deployment: The resources defined in the ClusterlP file are
deployed

- Pods verification: This is to check if the pods were deployed correctly and where
they are located (Pending state).

:/%$ kubectl get pods -o wide
NAME READY STATUS RESTARTS IP NODE NOMINATED NODE READINESS GATES
fastapi-app-76f6674775-2cmhy a8/1 Pending] <none> <none> <none> <none>
fastapi-app-76f6674775-655h] 8/1 Pending e <none> <none> <none> <none>
fastapi-app-76f6674775-n2dcf 8/1 Pending Gl <none> <none> <none=> <none=>

- Services verification: Display all active services in cluster.

:/$ kubectl get services -o wide
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE SELECTOR
fastapi-app-clusterip-service ClusterIP 16.182.208.89 <none= 80/TCP 118s app=fastapi-app
Kkubernetes ClusterIp 10.96.8.1 2 <none:=

Every 2.8s: Kubectl get nodes Master: Mon Oct 14 13:20:12 2824

NAME STATUS ROLES VERSION
master Ready control-plane vl1.28.1
workerl Ready <none> v1.28.1
worker2 Ready <none> v1.28.1

- Service inspection: Provides in-depth details about the service, including
endpoints, which show the IP address of pods accessible through this service.

:~% Kubectl describe svc fastapi-app-clusterip-service
fastapi-app-clusterip-service
default
<none>

<none>
app=fastapi-app
ClusterIP

IP Family Policy: SingleStack

IP Families: IPvy
16.162.2088.89
16.162.2088.89
<unset> 88/TCP
TargetPort: 5000/TCP
Endpoints: 172.16.235.129:5000,172.16.235.130:5000,172.16.235.131:56088
Session Affinity: None
Events: <none=

On each address on Endpoint, an application is running.

- Service connection: We send an HTTP request to one of the service endpoints to
verify that the application responds correctly.

:~$ curl http://172.16.235.129:5000

{"hello": "world"} 1t

- Podtest creation: Pod base on Nginximage to test network access

$ kubectl run testpod --image=nginx

- Podtest access: Open aninteractive shell inside the pod to perform tests from it.
$ kubectl exec -it testpod — bash
:~% kubectl exec -it testpod —- bash

Error from server: no preferred addresses found; known addresses: []

- Curlrequest : We rerun the HTTP request, but this time from inside the test pod, to
check if the connectivity between pods is functional.

- Delete all ressources: We remove all resources deployed for the ClusterlP service
to clean up the environment before moving to the NodePort service.

$ kubectl delete -f ./ClusterIP

3) NodePort service deployment

- Deploy NodePort: This command deploys the resources defined for the NodePort
service. ANodePort service exposes an application outside the cluster by assigning
a port on each node in the cluster.
$ kubectl apply -f ./NodePort

- Pods check: Checking that pods has been deployed correctly
$ kubectl get pods -0 wide

- Service verification: Lists the services including the NodePort and shows details like
node IP and access port.
$ kubectl get services -0 wide|

- NodePort inspection: We check the details of the NodePort service, especially the
port assigned by Kubernetes to access the application from outside.
$ kubectl describe services name of service

- Connectivity test: We make an HTTP request to the node IP with the assigned port to
verify that the application is accessible from outside the cluster.

$ curl http://node 1 ip:NodePort value

- Delete Resources: We clean the environment by removing all resources related to
the NodePort service.
$ kubectl delete -f ./NodePor

Conclusion

To conclude, this project set up and tested network connectivity between a virtual machine
(VM), Docker containers, and the OpenStack environment. We used NAT to ensure
bidirectional communication, configured port forwarding rules, and successfully tested
SSH access. Duplicating VMs, provisioning Docker containers, and creating a network
infrastructure in OpenStack demonstrated the flexibility of virtualized systems.

	Theoretical part
	Practical part
	a) VM Connection
	Fifth part: Docker containers provisioning

