
Technologies for

Cedric Chanfreau Samia Boukouiss **INSA Toulouse** 2024 - 2025

Introduction to 6G

Evolution of Mobile Networks: From 1G to 5G

Introduction to 6G

What is 6G?

- Next-generation wireless technology
- Expected around 2030
- Interconnect machines, environments, and smart systems

Introduction to 6G

Key Goals of 6G

Ultra-high Speeds

100 times faster than 5G

Minimal Latency

Near-zero delay to enable real-time interactions

Enhanced Network Reliability

Reliable enough for critical applications

6G Applications & Opportunities

New possibilities with 6G

Extended Reality (XR)

Holographic Communication

Immersive Experiences

6G Applications & Opportunities

Advanced Applications Across Industries

Autonomous Vehicles

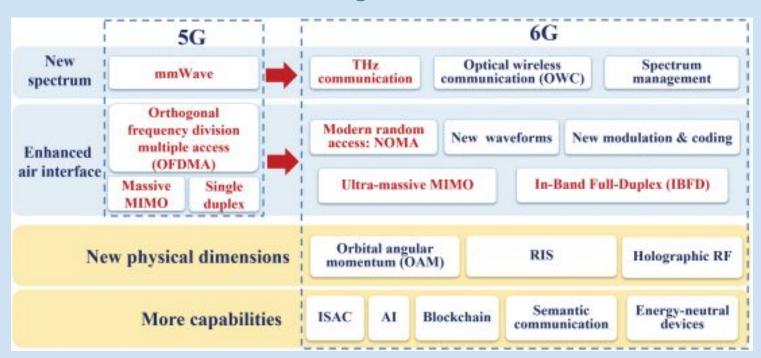
Smart Manufacturing (Industry 4.0)

6G Applications & Opportunities

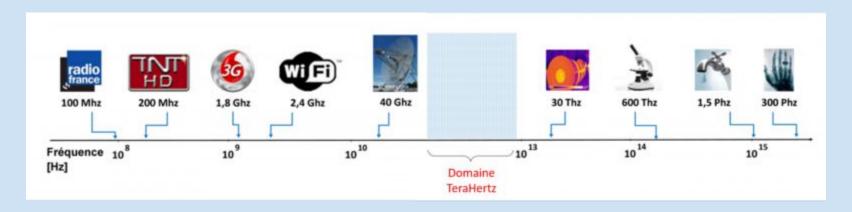
Expanding Connectivity to Remote and Challenging Environment

6G aims

High-speed, reliable internet in hard-to-reach areas



Rural regions Mountains Underwater


Expanding access and supporting applications in remote healthcare, environmental monitoring

Technologies Overview

Terahertz (THz) Communication

Goals: Ultra-high data rates and low latency in wireless communication.

Applications: Virtual Reality (VR), Augmented Reality (AR), autonomous vehicles.

Challenges: Requires advanced noise management and interference reduction technologies.

Al and Machine Learning for 6G

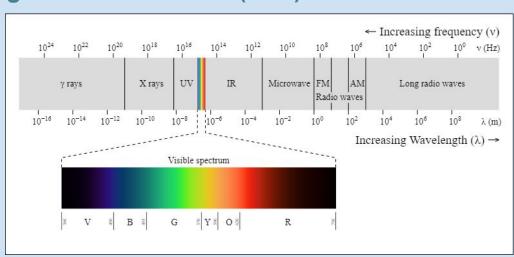
Role: Optimizing network performance and managing data congestion.

Applications: Smart routing, predictive data demand.

Challenges: High computational needs, secure and adaptive algorithms.

Quantum Communication and Advanced Security

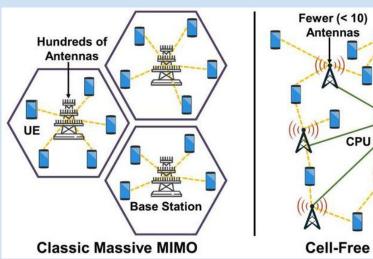
Goal: Enhanced security with quantum-based communication.


Mechanism: Quantum cryptography to protect data.

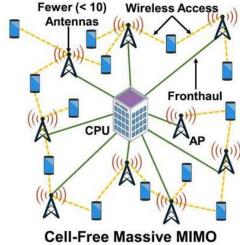
Impact: Secure communication resistant to cyber-attacks.

Visible Light Communication (VLC)

Principle: Utilizes the visible light spectrum (400-800 THz) to transmit data.


Applications: Underwater communication, indoor navigation, RF-restricted areas.

Challenges: Requires direct line-of-sight, susceptible to interference from other light sources.


Ultra-massive MIMO (Multiple Input, Multiple Output)

Definition: Uses large antenna arrays to boost network capacity.

Applications: High-density urban areas, support for THz frequencies.

Challenges: Hardware complexity, high energy consumption.

Intelligent Reflecting Surfaces (IRS)

Definition: IRS is a surface that reflects signals to optimize network performance.

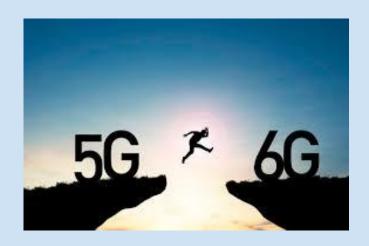
Applications: It improves signal coverage, reduces power usage, and boosts capacity.

Challenges: The main challenges are design complexity, deployment, and real-time optimization.

Block Chain

Definition: Blockchain is a decentralized ledger that records transactions.

Applications: It enables secure data sharing in healthcare, finance, and government.


Challenges: Scalability, computational demands, and system interoperability remain obstacles.

Other Promising Technologies

- Orbital Angular Momentum (OAM)
- Holographic Beamforming
- Edge Computing
- In-Band Full-Duplex
- Dynamic Network Slicing
- New Waveforms
- Satellite-terrestrial integrated networks

Challenges developing 6G

Technical Obstacles

Power Consumption

Signal Propagation

Hardware Limitations

Challenges developing 6G

Security and Privacy Concerns

Connect a vast number of devices and systems..

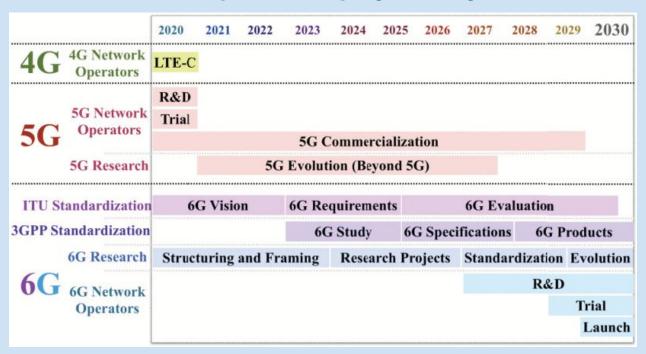
Cybersecurity?

Increased data sharing and hyperconnectivity..

User privacy?

Challenges developing 6G

Regulatory Challenges


Spectrum Allocation

The THz spectrum needed for 6G is largely unallocated, requiring coordinated global efforts to manage these frequencies.

Global Coordination

To avoid interference and ensure compatibility across borders, regulatory bodies worldwide will need to work together, making international cooperation essential.

Roadmap to 6G Deployment by 2030

International Research Initiatives and Collaborations

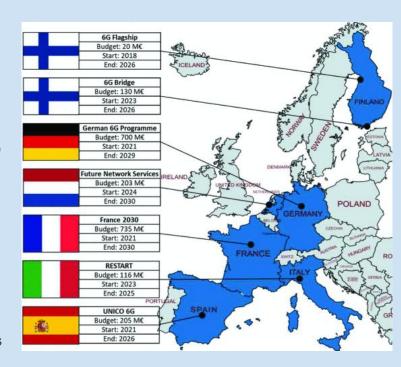
Finlande - 6G Flagship/6G Bridge 165M€

World leader in 5G and 6G innovation

- + Sectors such as healthcare, energy and automotive
- + Human-centered applications

Netherlands - Future Network Service 203M€

Leading position in certain parts of 6G


+ Economics and innovation in

 Economics and innovation in advanced network technologies

Italy - RESTART 116M€

Key player in research and innovation

 Future telecommunications systems and networks ⇒ start-ups and intelligent network infrastructures.

Germany - German 6G Programme 700M€

World leader in 6G technologies

+ Specific applications ⇒ campus networks, mobility, and global coverage

France - France 2030 735M€

Leader in future network technologies

+ 5G and 6G applications and to support R&D

Spain - UNICO 6G 205M€

5G and 6G R&D center of excellence

 Digital and technological future networks.

International Research Initiatives and Collaborations

China 6G R&D Program

Huawei, ZTE

K-ICT 6G Research Program

NTT, NEC Corporation

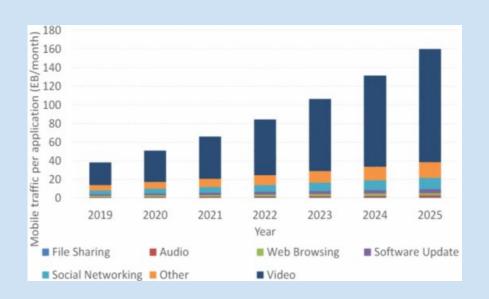
Next G Alliance

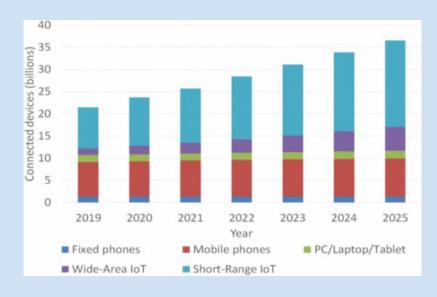
AT&T, Qualcomm

6G Vision 2030

Samsung, LG

Roles of Governments, Industry, and Academia





6G's Impact on Society

Ubiquitous Connectivity and New Applications

6G's Impact on Society

Carbon Footprint Reduction and Sustainability

Reducing emissions ——— Optimized energy consumption Better resource management Reduced environmental impact

Energy transition and resource management

Optimizing natural resources

Energy efficiency in agriculture

Facilitating the
Sustainable
Development Goals

Innovation for human development

Reducing global inequalities

6G's Impact on Society

Network Security and Reliability Issues

Personal Data Security	Threat Resilient Networks	Critical Applications and Crisis Management
 Protection of Sensitive Information 	 Attack Detection and Neutralization 	 Reliable Emergency Communication
Transaction Confidentiality	Continuity of Critical Services	 Security for Automated Systems
Cyber Attack Prevention	 Securing Critical Infrastructures 	 Real-Time Environmental Monitoring