INSTITUT NATIONAL
‘ DES SCIENCES

APPLIQUEES

TOULOUSE

Cloud Computing

Chanfreau Cedric
Boukouiss Samia
51SS

15/10/2024

Lab 1: Introduction to Cloud Hypervisors

Objectives 1 to 3:

Theoretical part

1. Similarities and differences between the main virtualisation hosts (VM et CT)

M+

Hypervisor (Type 2)
Host 0S
Server

Figure 1: VM vs CT

We will compare the two types of hosts based on two perspectives: from an application

devel oper 6s

From an

point

application

of vi ew,

and

from an i

devel oper 6s

Virtual Machine

Container

Virtualization cost, taking into
consideration memory size
and CPU

It requires more memory, as
each VM includes its own
0S. |l t6s mor e
virtualize because it emulates
an entire machine on the
hardware level.

It requires less memory
because the
duplicate the OS and the
application is bundled to run
across various environments.
This makes it lightweight and
cheaper to host.

CT

Usage of CPU, memory and
network for a given
application

Higher CPU overhead due to
the emulation of hardware
and presence of multiple OS
instances. So, there is more
control over the allocated
resources

Lower CPU overhead
because they run as
lightweight processes on the
host OS.

Security for the application
(access right, resources
sharing)

More secure because there is
a strong isolation between

Security flaws because
containers share the same
kernel and libraries as the

nfrastruc:

applications (each VM runs
its own complete OS).

host system (they are more
vulnerable to attacks and
exploits)

Performances (response
time)

Higher response time
because for each operation
we have to regenerate the
environment.

Lower response time, startup
in ms.

Tooling for the continuous
integration support

No widespread development
tools.

It comes with development
kits.

Flexibility, dynamicity

Difficult to modify disk size
and allocated resources for a
VM, and transferring
programs requires more

Easy to adjust allocated
resources for a container or
application, with minimal
code needed to transfer and

effort. deploy work.
From an infrastructure administrator :
1- Developer point of view :
Virtual Machines Containers

VM, though bulkier and less
flexible, are useful for tasks
requiring full machine
emulation or precise network
control. However, due to their
high costs, slow boot times,
and excessive resource
demands, they are often an
impractical choice for most
development needs.

CT offer developers
portability and flexibility,
enabling cost-effective and
efficient application hosting.
Their lightweight nature
allows for resource sharing,
quick startup, and response
times, making them ideal for
testing and deployment.
Additionally, bundled
development kits provide
extra benefits.

2- SystemAdministrator point of view :

Virtual Machines

Containers

VM are valued by system
administrators for their
complete isolation, which
enhances security and
independence, and their
unique OS that provide
specialized tools. Although
they are resource-intensive,
this is typically manageable
for administrators overseeing
large systems with sufficient
resources.

CT present notable
challenges for system
administrators due to security
risks, limited control over
hardware, and restricted
network configurations.
These issues make CT less
suitable for system
administration tasks.

2. Similarities and differences between the

existing CT types

Different CT technologies are available in the market (e.g. LXC/LXD, Docker, Rocket,
OpenVZ, runC, containerd, systemehspawn). Their respective positioning is not obvious,
but comparative analyses are available online such as:

- LXC is anoperating systemlevel virtualization tool. It allows running multiple
isolated Linux operating system instances on a single Linux host, while sharing the
same kernel.

- Docker is a containerization platform that allows applications to run in isolation.
Unlike LXC, Docker focuses specifically on containerizing applications, rather than
entire operating systems.

8) & ¢ Pod
Linux Containers Docker 1.10 and later
| systemd |
o] o B & s B

containerd-shim tainerd-shi

containerd-shim caontainerc in
liblxc i
[bk] Tontanerd
—
: | lo
Docker Engine §. u
namespaces namespaces cgroups

SELinux/AppArmor SELinux/AppArmor

Linux kernel Linux kernel

Pod

systemd |

YA

EG

We define here the criteria we will use to compare the container technologies (CT) :

- Application Isolation and Resources (Multi-tenancy):

It refers to the architecture of the server hosting containers, where a single instance of the
host OS supports multiple tenants (containers).

- Containerization Level (e.g., Operating System, Application):

Containerization packages software and its dependencies, enabling it to run anywhere.

- Tooling (e.g., API, Continuous Integration, Service Composition):

It refers to the tools offered with the container service, such as development kits, migration

tools, and custom settings.

Technology Application Containerization level Tooling
Isolation
OSlevel containers, LxC offers a CLI for
LXC Light Isolation: allowing kernel sharing

Although containers
share the core, they
remain isolated from
each other, ensuring
adequate security
and stability.

with the host.

container management
and supports APIs.

Docker

Enhanced Container
Isolation provides an

Operating system level
containers, allowing

Docker is welkknown
for its user-friendly CLI

additional layer of
security to prevent
malicious workloads
running incontainers
from compromising
Docker Desktop or
the host.

kernel sharing with the
host.

and API. It has strong
CI/CD support with
Docker Compose and
Kubernetes integration.
Docker Compose is
useful for service
composition.

spawning and
running containers
on Linux according to
the OCI

specification.

containers, integrated
in larger systems.

Rocket RKT provides Application-level It features a CLI for pod
application isolation | containers, with a based deployments and
using proven layered architecture integrates seamlessly
mechanisms such as | allowing for flexibility. | with systemd for
Control Groups service.

(Cgroups) and
SELinux, ensuring
that containers run in
protected
environments and
limit their access to
system resources.

OpenVZz Good isolation even if| Application level It offers a variety of
containers share the management tools.
kernel.

runC runC is a CLI tool for | Application-level It operates with a

command-line interface
and adheres to OCI
specifications for
managing container
lifecycles.

https://rocket.readthedocs.io/en/latest/Documentation/rkt -vs-other-projects/

3. Similarities and differences between Type 1

There are two main types of hypervisors:

https://rocket.readthedocs.io/en/latest/Documentation/rkt-vs-other-projects/

GUWNWY! WuAe! JWaWqcédws W

N !
- N GUW=Z WYl Wb Yt qlT wb
A Type 1 hypervisor runs directly on the host's hardware, functioning like a lightweight
operating system and it is preferred in enterprise and production environments for its

performance and security.

Userspace Userspace Userspace

Kernel . Kernel Kernel

Vinual 05

Monitor Monitor Monitor

Hypervisor
Hardware

. ml,,. oy
Men oyt e

While a Type 2 hypervisor operates as a software layer on an existing operating system, like
other applications and it is commonly used in desktop and development settings for its
ease of use.

Userspace

Kernel

SO fenuip

Manitor

User process User process Hypervisor
Kernel

Hardware
N7

AKVM @EmMu ¥

Architecture Performance Use cases

Type 1 (OpenStack) , It usually provides It is commonly used

It operates (_Jllrectly better performance | in enterprise data

on the prllysmal host | by directly centers and cloud

machine’s bare- accessinghardware | environments where

m.etal hardware resources, performance,

without the need for | g|iminating the scalability, and

an underlying 0S. | ,yerhead of an resource isolation

operating system are critical .
layer.

Type 2 (VirtualBox)

It runs on top of an
existing OS and
operates as
applications or
processes within
that traditional OS.

It generallyhas
more overhead than
Type 1 hypervisors
becauseit depends
on the host OS to
manage hardware
resources.

It iscommonly used
in desktop or
developer
environments where
performance is less
critical.

Objectives 4 to 7 :

Practical part

In this part, we will use the VirtualBox hypervisor (type 2) in NAT mode and set up the
network to enable two-way of communication with the outside.

First part: Creating and configuring a VM
- Open VirtualBox

- Unziparchive

- Createand configureanew VM

- Launch the VM

Second part: Testing the VM connectivity

a) VM Connection

Once logged inwe used theifconfig command in the VM terminal to identify the assigned

IP address

1 osboxes@osboxes: ~/Desktop

5 $ ifconfig
docker®: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500
inet 172.17.0.1 netmask 255.255.0.0 broadcast 172.17.255.255
ether 02:42:10:08:05:9b txqueuelen ® (Ethernet)
RX packets @ bytes 0 (0.0 B)
RX errors ®© dropped ® overruns @& frame 0
TX packets ® bytes @ (0.0 B)
TX errors @ dropped ©® overruns ©® carrier @ collisions @

: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 10.0.2.15 netmask 255.255.255.08 broadcast 10.0.2.255
inet6 feBO::e684:9549:3e7:5f73 prefixlen 64 scopeid @x20<link>
ether 08:00:27:7f:16:43 txqueuelen 1000 (Ethernet)
RX packets 28284 bytes 42401574 (42.4 MB)
RX errors © dropped ® overruns © frame 0
TX packets 1435 bytes 120516 (120.5 KB)
TX errors @ dropped ©® overruns ® carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.0.8.1 netmask 255.0.0.0
inet6 ::1 prefixlen 128 scopeid 0x10<host=>
loop txqueuelen 1800 (Local Loopback)
RX packets 241 bytes 19981 (19.9 KB)
RX errors © dropped @ overruns @ frame ©

NAT Addres: 172.17.0.1
Virtual MachineAddress: 10.0.2.15

Loopback address : 127.00.1

EN Windows PowerShell =

Network

Host Machineassociated to VirtualBoxHost Only-Network: 192.168.56.1
Address Ethernet Interface of Host: 10.1.5.89

b) Connectivity Verification
In this part, wetested the different connectivity between eachcomponent:

- Vmé Host Machine: Ping Ok

PING 192.
64 bytes
64 bytes

64 bytes
64 bytes
64 bytes

- Host Machineé Nat/VM:

168.56.1

from
from
from
from
from

192.
192.
192.
192.
192.

168.56.
168.56.1:
168.56.1:
168.56.1:

$ ping 192.168.56.1
(192.168.56.1) 56(84) bytes of data.

1: icmp_seq=1 ttl=127 time=1.
icmp_seq=2 ttl=127 time=1.
icmp_seg=3 ttl=127 time=1.
icmp_seq=4 ttl=127 tim

L8

168.56.1

Ping Failed

: icmp_seq=5 ttl=127 time=0.885 ms

Toconclude those tests, it was not possible to ping the host machine with the VM because

of the NAT that idoetween, and the address is not routableWhereasthe opposite was

possible.

To resolve this issue, a solution would be to use a port forwarding rule. Allowing to ensure

the communication by redirecting request from host to any port configured inside the VM.

Third

To enable communication betweenthe host machine and the VM in NAT modeye can

part

Set

up the

configure port forwarding in VirtualBox

By specifying that all data arriving on the physical machine at a specific port (1234)

destined for the VM port 22.

@ Régles de redirection de ports

Ami ssingo

connect

Nom

Protocole

{ TCP

IP hate

Port hate

1434

IP invite

Port invité

22

Vv

t

After this configuration, we installed openssh on VM to test thank$PuTTy that the
connection was well established.

de données :

approximative
Minimum = @ms, Maximum = @ms,

Fourth part: VM duplication
To createa new clone with the same disk file, here is the commanae used:

PS C:\Program Files\Oracle\VirtualBox> .,«’\-‘BoxManage.exe clonemedium

0%. ..

Projet e + B . “
<« ™ C (J > Téléchargements > Projet > Rechercher dans: Projet -
® Nouveau Tl Trier = Afficher s (B Détais

% Accueil Nom Modifié le Type il
| Galerie Aujourd hui

W Ubuntu 22.04 (64bit)-copy.vdi Virtual Disk Image

W Ubuntu 22.04 (64bit)vdi Virtual Disk Image

&M Bureau

D Ubuntu 22,04 (64bit).7z 7-zip.7z

{ Teléchargement

1. Docker Containers Setup:
- Update existing list of packages:

B S sudo apt update

[sudo] password for osboxes:

Get:1 https://download.docker.com/1linux/ubuntu jammy InRelease [48.8 kB]
http://security.ubuntu.com/ubuntu jammy-security InRelease [129 kB]
http://us.archive.ubuntu.com/ubuntu jammy InRelease
http://us.archive.ubuntu.comfubuntu jammy-updates InRelease [128 kB]
https://download.docker.com/1linux/ubuntu jammy/stable amd64 Packages [40.7

Get:2
Hit:3

Get:4
Get:5
kB]
Get:6
Get:7

http://us.archive.ubuntu.com/ubuntu jammy-backports InRelease [127 kB]
http://security.ubuntu.com/ubuntu jammy-security/main amd64 Packages [1,84

- Install prerequisite packages which let apt use packages over HTTPS:

B S sudo apt install apt-transport-https ca-certificates
curl software-properties-common
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
libcurl4 python3-software-properties software-properties-gtk
ubuntu-advantage-tools ubuntu-pro-client

- Add the GPG key for thefficial Docker + Docker repository to APT sources:

A $ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o Jusr/share/keyringd
docker-archive-keyring.gpg

B $ echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/docker-archive-keyring.
g] https://download.docker.com/linux/ubuntu $(1sb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > fdev/

- Update existing list of packages again fahe addition to be recognized:

B S sudo apt update
[sudo] password for osbox
Get:1 https://download.docker.com/1linux/ubuntu jammy InRelease [48.8 kB]
Get:2 http://security.ubuntu.comfubuntu jammy-security InRelease [129 kB]
Hit:3 http:/fus.archive.ubuntu.com/ubuntu jammy InRelease
Get:4 http://us.archive.ubuntu.com/ubuntu jammy-updates InRelease [128 kB]

Get:5 https://download.docker.com/1linux/ubuntu jammy/stable amd64 Packages [40.7
kB]
Get:6
Get:7

http://us.archive.ubuntu.com/ubuntu jammy-backports InRelease [127 kB]
http://security.ubuntu.com/ubuntu jammy-security/main amd64 Packages [1,84

- Make surewe will install from Docker repository instead of Ubuntu repository:
- Install Docker + Check it is running:

docker.service - Docker Application Container Engine
Loaded: loaded (/lib/systemd/system/docker.service; enabled; vendor preset: enabled)
since Tue 2024-10-01 10:08:12 EDT; 1min 57s ago
docker.socket
: https://docs.docker.com
: 12225 (dockerd)

8

7.7TM

715ms

[system.slice/docker.service

12225 Jusr/bin/dockerd -H fd:// --containerd=/run/containerd/containerd.sock

Memory:
CPU:
CGroup:

osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes
osboxes

lines 1-22/22 (END)

dockerd[12225]:
dockerd[12225]:
erd[12225]
dockerd[12225]:
dockerd[12225]:

dockerd[12225]:
dockerd[12225]:

2024-10-01T10

|
!
Falal
2
2.
2
7
2

N

.593695091-04:
.B69972651-04:
.908798973-04:
.432100563-04:
537547171-04:
-537965299-04:
.635943653-04:
.639103029-04:
.775608925-04:

ee"
00"
06"
00"
0e"
0"
06"
ee"
00"

level=info
level=info

level=info
level=info

systemd[1]: Started Docker Application Container Engine.

msg="detected 127.0.0.53 namese
msg="[graphdriver] using prior §
msg="Loading containers: start.’
msg="Default bridge (docker®) ig
"error locating sandbox i
msg="Loading containers: don
msg="Docker daemon" commit=
msg="Daemon has completed i
msg="API listen on /run/docker.q

Installing Docker now gives us not just the Docker service (daemon) but also the docker
command line utility, or the Docker client.

Fifth part: Docker containers provisioning

We can nowprovision Docker nodes.

$ docker info

Client:
Context: default
Debug Mode: false
Plugins:
app: Docker App (Docker Inc., v@8.9.1-beta3)

buildx: Docker Buildx (Docker Inc., v@.9.1-docker)
scan: Docker Scan (Docker Inc., v8.17.0)

Server:
ERROR: Got permission denied while trying to connect to the Docker daemon socket at unix:///var/run/d
Fdocker.sock/v1.24/info": dial unix /var/run/docker.sock: connect: permission denied
printing info

- Pull an Ubuntu image:

g $ sudo docker pull ubuntu
Using default tag: latest
latest: Pulling from library/ubuntu
dafa2b8c44d2: Pull complete
Digest: sha256:dfc10878be8d8fc9c61cbff33166cb1d1fe44391539243703c72766894FaB34a
Status: Downloaded newer image for ubuntu:latest
docker.io/library/ubuntu:latest

- Execute Ubuntu instance image CT1:

A S sudo docker run --name ctl -it ubuntu
docker: Error response from daemon: Conflict. The container name "/ctl" is already in use by container "bc306bc8711a81a8244b0
206b97844ba49dan25861fa7b1750ad462e01c939". You have to remove (or rename) that container to be able to reuse that name.
See 'docker run --help'.

- Install required connectivity testing tools:

B $ sudo apt-get -y update && apt-get -y install net-tools iputils-ping
Hit:1 http://us.archive.ubuntu.com/ubuntu jammy InRelease

Hit:2 http://security.ubuntu.comfubuntu jammy-security InRelease

Hit:3 http://us.archive.ubuntu.com/ubuntu jammy-updates InRelease

Hit:4 http://us.archive.ubuntu.com/ubuntu jammy-backports InRelease

Hit:5 https://download.docker.com/1linux/ubuntu jammy InRelease

Reading package lists... Done

E: Could not open lock file /var/lib/dpkg/lock-frontend - open (13: Permission denied)

E: Unable to acquire the dpkg frontend lock (/var/lib/dpkg/lock-frontend), are you root?

- Check the connectivity:
o Ifconfigto getIP AddressC 172.17.0.2:

root@lbod6ed3199b: /# ifconfig
etho: flags=4163<UP,BROADCAST ,RUNNING,MULTICAST> mtu 1500
inet 172.17.8.2 netmask 255.255.0.8 broadcast 172.17.255.255
ether 02:42:ac:11:00:02 txqueuelen © (Ethernet)
RX packets 2292 bytes 25252917 (25.2 MB)
RX errors @ dropped @ overruns ©@ frame @
TX packets 1231 bytes 71363 (71.3 KB)
TX errors @ dropped @ overruns @ carrier @ collisions @

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
inet 127.6.0.1 netmask 255.0.0.0
ineté ::1 prefixlen 128 scopeid 0x10<host>
loop txqueuelen 10868 (Local Loopback)
RX packets © bytes 6 (0.0 B)
RX errors @ dropped 6 overruns 0@ frame 8
TX packets ©® bytes @ (0.0 B)
TX errors @ dropped @ overruns @ carrier @ collisions @

Each Docker containere + 1J ¢ W2 RI qe ¢ G WUWqs Y1 tthERdgdta distimct # 1J Wbl /bH

IP addresswhich is part of an internalsubnet managed by Docker

0 Ping Internetresource from Docker was a success:

root@lbedeed3199b: /# ping google.com
PING google.com (142.250.200.238) 56(84) bytes of data.
64 bytes from mrs@8s18-in-f14.1e100.net (142.250.200.238): icmp_seq=1 ttl=112 time=7.10 m

s
64 bytes from mrs@8si18-in-f14.1e100.net (142.250.200.238): icmp_seq=2 ttl=112 time=7.50 m

s
64 bytes from mrs@8si18-in-fi14.1e100.net (142.250.200.238): icmp_seq=3 ttl=112 time=7.44 m
s
aC
-- google.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2085ms
rtt min/avg/max/mdev = 7.097/7.344/7.496/0.176 ms

gibodea

The Docker container was able to contact an external resource on the internet, proving that

the NAT network configured for Docker allows the container to access the outside.

o Ping VM from Docker was a success too:

root@ibedéed3199b: /# ping 172.17.0.2

PING 172.17.0.2 (172.17.08.2) 56(84) bytes of data.

64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.028 ms

64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.055 ms

!‘.C

--- 172.17.0.2 ping statistics ---

2 packets transmitted, 2 received, 0% packet loss, time 1011ms

Docker can contact the VM hosting the container, which demonstrates that the internal
communication between the two environments (Docker container and VM) works

o Ping the Docker from the VM worked well:

1% ping 172.17.0.2
PING 172.17.8.2 (172.17.0.2) 56(84) bytes of data.
64 bytes from 172.17.0.2: icmp_seq=1 ttl=64 time=0.063 ms
64 bytes from 172.17.0.2: icmp_seq=2 ttl=64 time=0.081 ms

64 bytes from 172.17.0.2: icmp_seq=3 ttl=64 time=0.881 ms

AC
-- 172.17.0.2 ping statistics ---

3 packets transmitted, 3 received, 0% packet loss, time 2052
rtt mtn/avg/max}mde: = 0.063/0.075/0.081/0.008 ms

Similarly, the VM was able to ping the Docker container, showing successful-tirectional
connectivity between the VM and Docker.

All connectivity tests passed, showing that the network configuration between Docker, the
host machine (VM), and Internet access was done correctly.

- Execute a new instance (CT2) of the ubuntu Docker:

Start a new Ubuntu containerand configure port forwarding to allow SSH access from the
host via port 2233

$ sudo docker run --name ct2 -p 2223:22 -it ubuntu

root@af5c63e5cif3: f#

- Snapshot of VT2:
Saves the current state of thecontainer as a Docker image for later reuse or sharing.

It can be useful to commit a container's file changes or settings into a new image. This lets
you debug a container by running an interactive shell or export a working dataset to
another server.

By default, the container beingcommitted, and its processes will be paused while the
image is committed.

% sudo docker commit af5c63e5cif3 cedric:nano
shaz256:12cec668724Ta%e8f2371683b574afd6d0c4801ab20a612c5e7b80d15¢c986¢cel
:$ sudo docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

NAMES
af5c63e5c1f3 ubuntu "/bin/bash" 8 minutes ago Up 8 minutes 0.0.0.0:2223->22ft
cp ct2

- Stop and terminate CT2:

Stops the CT2 container and deletes it to free up resources.

:-§ sudo docker rm af5c63e5cif3
af5c63e5cif3
:-$ sudo docker ps

p

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

- List the available Docker images in the VM:

Shows all Dockerimages stored locally on the VM to see which ones are ready to use.

: S sudo docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
cedric nano 12cec668724F 4 minutes ago 1260MB
ubuntu latest ble9cef3f297 4 weeks ago 78.1MB
ubuntu <none= 216c552easba 24 months ago 77 .8MB

- Execute a new instance CT3 from the previous snapshot:

Starts a new CT3 instance based on the previous image, retaining the installed
environment and tools (like Nano).

udo docker run --name ct3 -it cedric:nano

root@@3bs418abf

- Make a proper recipe with DockerFile:

FROM ubuntu

RUN apt update -y

RUN apt install -y nano
CMD ["/bin/bash"]

B S sudo docker build -t cedric:nano -f myDocker.dockerfile .
[+] Building 24.8s (7/7) FINISHED

With the automated script (Dockerfile), we created a custom Docker image with projeet
specific dependencies and configurations.

F S sudo docker images
REPOSITORY TAG IMAGE ID CREATED
cedric nano 715e6fd7b369 days ago
=none:= =none: 809feb5d8c32 days ago

=none= =none= 12cec668724f days ago
ubuntu latest ble9cef3f297 weeks ago
ubuntu <none: 216c552easba years ago

Objectives 6 and 7:

First Part: CT creation and configuration OpenStack

- OpenStack Connexion/Authentication:

[o | Dlopenstack - sssare
|] =
I/ . Vue d'ensemble
openstack.
Se connecter
Domaine
INSA
Nom d'utilisateur
chanfreau
Mot de passe
®

- Creation of a VM / private network and gateway

[lopenstack = .sssare-
¥ Projet | Compuie / Instances

— . Instances *

182 168.37.75

1D de Mnstance ==

Status. Availability Zone Task Power State Age Actions
Corersen rova S .. Omeso
Géneraton

Créer un réseau

Sous-réseau

Réseau

Nom du sous-réseau

Adresse réseau @

Détails du sous-réseau

12.7.5.32/24)

Version IP

IPv4

Adresse IP de la passerelle @

O Désactiver la passerelle

Crée un sous-réseau associé a un réseau. Vous devez
entrer une "Adresse réseau” et une "Adresse IP de la
passerelle” valide. Si vous n'entrez pas d"Adresse IP de
la passerelle”, |a premigre valeur (IP) de voire réseau sera
assignée par défaut. Si vous ne souhaitez pas de
passerelle, veuillez cocher "Désactiver la passeralle”.
Cliquez sur I'onglet "Détails Sous-réseaux” pour
configurer des options avancées.

A r7/0°LE89T TRT

& chanireau +

YOS LT

A VM cannot be created from a public network for different reasons, so we created a private

network:

0 Network separation: The private network allows to isolate VMs from other networks.
Indeed, this means that VMs can communicate with each other without being
directly exposed to external threats or unauthorized traffic from the Internet.

(0]

Traffic control: We can better manage incoming and outgoing traffic. The router

plays an important role because it controls the flow between private and public

network.

To allow ICMP traffic (ping) and SSH, we added three new security rules:

Gérer les regles du groupe de sécurité : default
(b4181ac3-3b34-41dd-8430-9e1d7b381ed6)

Aifichage de 7 éléments

O Direction Ether Type 1P Protocal Port Range
O Sorie 1Pv4 Tous Tous

o [Sortie 1Pua ICMP Tous

O Sortie 1Pv6 Tous Tous

O Entrée 1Pva Tous Tous

O | Entrée 1Pv4 IcMP Tous

O [Eiiige 1Pv4 TCP 22 (SSH)

O Entrée 1Pv6 Tous Tous

Remote IP Prefix

0.0.0.0/0

0.0.0.0/0

10

0.0.0.0/0

0.0.0.0/0

+ Ajouter une régle

Remote Security Group Deseription

default

default

'@ Supprimer les Régles

Actions

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Supprimer une Régle

Second Part: Connectivity test

First, we associated an flotant IP for the VM to access the VM from the outside thanks ssh.
IP address from VM: The IP address displayed on the dashboard:

- 192.168.37.28: Public address useful to access the VM from outside.
- 12.7.5.176: Private address to communicate with another machine of the private network

O Instance Name Image Name IP Address

o VM Ubuntu4CLY 12.7.5.176, 192.168.37.28

Here, the router is important because it allows us to link the private network where the VM is
connected and the public network.

Connectivity Test:

Ping Google from the VM indicates that the network configuration is properly set up, allowing the
VM to communicate with external tools.

user@tutorial-vm:~$ ping www.google.fr

PING www.google.fr (142.251.37.35) 56(84) bytes

64 bytes from mrse9s13-in-f3.1e100.net (142.251.37. icmp_seq=1 ttl=113 time=6.65 ms
64 bytes from mrs09s13-in-f3.1e100.net (142.251.37. icmp_seq=2 ttl=113 time=6.46 ms

64 bytes from mrse09s13-in-f3.1e100.net (142.251.37. icmp_seq=3 ttl=113 time=6.49 ms
AC
- www.google.fr ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, 2003ms
rtt min/avg/max/mdev = 6.465/6.536/6.651/0.124 ms

Pinging the VM from the desktop verifies that incoming connections to the VM are working as
intended. This indicates that the VM's firewall and security group settings are appropriately
configured to allow traffic from the desktop.

3 $ ping 192.168.37.28
PING 192.168.37.28 (192.168.37.28) 56(84) bytes of data.
64 bytes from 192.168.37.28: icmp seq=1 ttl=61 time=2.57 ms
64 bytes from 192.168.37.28: icmp seq=2 ttl=61 time=0.983 ms
64 bytes from 192.168.37.28: icmp seq=3 ttl=61 time=0.906 ms
64 bytes from 192.168.37.28: icmp seq=4 ttl=61 time=0.771 ms
26

- 192.168.37.28 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3068ms
rtt min/avg/max/mdev = 0.771/1.306/2.567/0.731 ms

The ability to ping the desktop from the VM confirms that the internal network configuration is
functioning correctly. This ensures that the VM can communicate with other devices on the same
network.

Network Topology:

The network topology diagram allows to visualize the different networks, routers and instances
deployed in the infrastructure. This gives a clear overview of the connections and routing. By
analysing this diagram, we can check how the VMs are connected to each other and to the
outside.

Problem Possible:

A problem can be the absence or misconfiguration of the connection between the private network
and the public network. If the instances are only connected to a private network without a gateway
to the public network or the Internet, it will not be possible to access the outside or be accessible
from it.

In our case, the problem could come from the absence of a correctly configured router to connect
the private and public networks, or from bad routing between the subnets.

New topology creation:

- Create a new network with the gateway definition (192.168.37.1)

- Create a new VM by selecting private network

- Make sure about the coherency between private network address and router.

- Create a new router that will be the role of link between private and public network.

- Create a floating IP to be able to access the VM by the outside.

- SSH connectivity to the VM.
As SSH connectivity is working, this proves that the network configuration, router, and floating IP
are configured correctly.

Third part: Snapshot, restore and resize a VM

