

TD Service Architecture

SOA ï REST - Microservice

Cédric Chanfreau

Timothé Bigot

Promotion 58 ς 2024 / 2025

20/12/2024

1

Introduction ... 2

1. Architecture SOAP .. 3

a) Définition de SOA (Architecture orientée service) .. 3

b) Choix de SOA pour le projet .. 3

c) Organisation des services .. 3

2. Architecture REST .. 5

a) Définition du REST ... 5

b) Structure du projet .. 5

3. Développement de ƭΩŀǇǇƭƛŎŀǘƛƻƴ ǎƻǳǎ ŦƻǊƳŜ ŘŜ ƳƛŎǊƻ-services .. 7

a) Création des micro-services avec Spring Boot .. 7

b) Nos micro-services ... 7

пΦ !ǳǘƻƳŀǘƛǎŀǘƛƻƴ ŘΩǳƴ ƳƛŎǊƻ-ǎŜǊǾƛŎŜ ŘŜ ƭΩŀǇǇƭƛŎŀǘƛƻƴ ... 13

Conclusion ... 14

2

Introduction

[Ŝ ōǳǘ ŘŜ ŎŜǎ ǘǊŀǾŀǳȄ ŘƛǊƛƎŞǎ Ŝǎǘ ŘΩŀǇǇƭƛǉǳŜǊ ƭŜǎ ŎƻƴŎŜǇǘǎ ŞǘǳŘƛŞǎ Ŝƴ ŎƻǳǊǎ ŎƻƴŎŜǊƴŀƴǘ ƭŜǎ

architectures SOAP, REST et le développement de micro-services, à travers un projet concret.

/Ŝ ǇǊƻƧŜǘ ŎƻƴǎƛǎǘŜ Ŝƴ ƭŀ ŎǊŞŀǘƛƻƴ ŘΩǳƴŜ ŀǇǇƭƛŎŀǘƛƻƴ ŘŜ ōŞƴŞǾƻƭŀǘΣ ǇŜǊƳŜǘtant à des bénévoles

ŘŜ ǊŞǇƻƴŘǊŜ Ł ŘŜǎ ŘŜƳŀƴŘŜǎ ŘΩŀƛŘŜ ŦƻǊƳǳƭŞŜǎ ǇŀǊ ŘŜǎ ǇŜǊǎƻƴƴŜǎ Řŀƴǎ ƭŜ ōŜǎƻƛƴΦ tƭǳǎƛŜǳǊǎ

fonctionnalités ont été implémentées dans le cadre de ce projet, et ce compte rendu présente

notre parcours de développement en détaillant les choiȄ ŘΩŀǊŎƘƛǘŜŎǘǳǊŜǎΣ Řŀƴǎ ƭŜ ōǳǘ ŘŜ ƳƛŜǳȄ

comprendre leurs avantages et limitations.

En consacrant un temps significatif à la réalisation des tutoriels, nous avons pu approfondir

notre compréhension des concepts sous-jacents aux architectures SOAP et REST, et ainsi les

ƳŜǘǘǊŜ Ŝƴ ǆǳǾǊŜ ŜŦŦƛŎŀŎŜƳŜƴǘ Řŀƴǎ ƴƻǘǊŜ ŀǇǇƭƛŎŀǘƛƻƴΦ [ΩŜƴǎŜƳōƭŜ ŘŜǎ ƳƛŎro-services a été

ŘŞǾŜƭƻǇǇŞ Ŝǘ ǘŜǎǘŞΣ ŀǾŜŎ ǳƴŜ ŀǘǘŜƴǘƛƻƴ ǇŀǊǘƛŎǳƭƛŝǊŜ ǇƻǊǘŞŜ Ł ƭΩŀǳǘƻƳŀǘƛǎŀǘƛƻƴ Ǿƛŀ aƛŎǊƻǎƻŦǘ

Azure pour l'un des micro-services.

3

1. Architecture SOAP

a) Définition de SOA (Architecture orientée service)

Une architecture orientée services (SOA) se distingue par sa capacité à décomposer une

application en composants autonomes, appelés « services », qui communiquent via des

interfaces standardisées, généralement via des protocoles web comme SOAP (Simple Object

Access Protocol). Chaque service dans une architecture SOA offre une fonctionnalité

spécifique et peut être consommé indépendamment des autres services. Ces services sont

souvent accessibles via des APIs, et les messages échangés sont typiquement formatés en

XML, garantissant une grande interopérabilité entre différentes plateformes. L'utilisation de

WSDL (Web Services Description Language) permet de décrire les services et leurs interfaces,

facilitant leur utilisation et leur intégration par d'autres applications.

b) Choix de SOA pour le projet

[Ŝ ǎŜǊǾƛŎŜ ζ ¦ǎŜǊ aŀƴŀƎŜƳŜƴǘ η ǎΩƻŎŎǳǇŜ ŘŜ ƭŀ ŎǊŞŀǘƛƻƴΣ ŘŜ ƭŀ ǎǳǇǇǊŜǎǎƛƻƴ Ŝǘ ŘŜ ƭŀ ƳƛǎŜ Ł ƧƻǳǊ

des utilisateurs dans la base de données. Le service « Volunteer Management » gère les

informations relatives aux bénévoles, telles que leurs compétences et disponibilités. Enfin, le

ǎŜǊǾƛŎŜ ζ wŜǉǳŜǎǘ aŀƴŀƎŜƳŜƴǘ η Ŝǎǘ ǊŜǎǇƻƴǎŀōƭŜ ŘŜ ƭŀ ƎŜǎǘƛƻƴ ŘŜǎ ŘŜƳŀƴŘŜǎ ŘΩŀǎǎƛǎǘŀƴŎŜΦ

Cette organisation permet de rendre chaque service autonome et réutilisable. Par exemple,

le service de gestion des bénévoles peut être utilisé par plusieurs autres applications sans

ŘŞǇŜƴŘǊŜ ŘƛǊŜŎǘŜƳŜƴǘ ŘŜ ƭŀ ƎŜǎǘƛƻƴ ŘŜǎ ǳǘƛƭƛǎŀǘŜǳǊǎΦ [ΩŀǇǇǊƻŎƘŜ {h! ŦŀǾƻǊise également la

flexibilité : si une fonctionnalité doit être modifiée ou ajoutée, il suffit de mettre à jour le

service correspondant.

c) Organisation des services

5ŀƴǎ ƭŜ ŎŀŘǊŜ ŘΩǳƴŜ ŀǊŎƘƛǘŜŎǘǳǊŜ {h!tΣ ƴƻǳǎ ŀǾƻƴǎ ŎǊŞŞ ǳƴ ǎŜǊǾƛŎŜ ǿŜō Ł ǇŀǊǘƛǊ ŘΩǳƴŜ ŎƭŀǎǎŜ

ƧŀǾŀΣ Ǉǳƛǎ ǳƴ ŎƭƛŜƴǘΣ ŀŦƛƴ ŘŜ ǇƻǳǾƻƛǊ ƭΩƛƴǾƻǉǳŜǊΦ

L'architecture SOAP adoptée pour le serveur de notre application d'aide aux personnes

vulnérables a été testée et validée en utilisant le WSDL (Web Services Description Language).

Le WSDL est un langage basé sur XML permettant de décrire l'interface d'un service web.

Nous avons créé une classe AnalyserChaine, ainsi qu'une classe AnalyserChaineApplication

afin de pouvoir lancer le service web.

4

Nous avons ensuite testé le code ci-ŘŜǎǎǳǎΣ Ł ƭΩŀƛŘŜ ŘΩǳƴ ǿŜō ǎŜǊǾƛŎŜ ŜȄǇƭƻǊŜǊΣ Ŝǘ Řǳ ŦƛŎƘƛŜǊ

²{5[Řǳ ǎŜǊǾƛŎŜ ǉǳŜ ƭΩƻƴ ǾƛŜƴǘ ŘŜ ŘŞǾŜƭƻǇǇŜǊΣ Ŝǘ ǉǳƛ ŎƻƴǘƛŜƴǘ ǘƻǳǘŜǎ ƭŜǎ ƛƴŦƻǊƳŀǘƛƻƴǎ

importantes.

Une fois lancé, nous pouvons observer les requêtes SOAP envoyés et reçus et confirmer que

le code fonctionne correctement, le bon nombre de caractère étant retourné.

5

2. Architecture REST

a) Définition du REST

L'API REST (Representational State Transfer) a été choisie pour permettre la communication

entre les services et pour exposer leurs fonctionnalités aux clients. REST est un style

architectural qui s'appuie sur les méthodes HTTP standards (« GET », « POST », « PUT », «

DELETE ») pour manipuler des ressources. Dans ce projet, chaque ressource correspond à un

élément essentiel : utilisateurs, bénévoles ou requêtes.

b) Structure du projet

Sur la partie REST, nous nous sommes principalement concentrés ǎǳǊ ƭŀ ŎǊŞŀǘƛƻƴ ŘΩǳƴ ǎŜǊǾƛŎŜ

ǿŜō wŜǎǘ Ł ǇŀǊǘƛǊ ŘΩǳƴŜ ŎƭŀǎǎŜ JŀǾŀ Ŝǘ ŘŜ ƭΩƛƴǾƻǉǳŜǊ ŜƴǎǳƛǘŜ ŀǾŜŎ tƻǎǘƳŀƴ ou depuis lΩinterface

graphique.

- Pour le service « UserManagement», les fonctionnalités suivantes ont été implémentées :

¶ GET /api/users : récupération de tous les utilisateurs.

¶ POST /api/users : ajout d'un utilisateur.

¶ DELETE /api/users/{id} : suppression d'un utilisateur par ID.

- Pour le service « userRequestService», les fonctionnalités suivantes ont été implémentées :

¶ GET /api/requests : Récupération de toutes les requêtes existantes, permettant un

suivi centralisé des demandes.

¶ POST /api/requests : Création d'une nouvelle requête en associant un utilisateur et

en décrivant la nature de la demande.

¶ PUT /api/requests/{id}/status : Mise à jour du statut d'une requête (par exemple : en

attente, validée, rejetée, complétée).

- Pour le service « VolunteerManagement», les fonctionnalités suivantes ont été

implémentées :

¶ GET /api/volunteers : Récupération de la liste de tous les bénévoles enregistrés, avec

leurs informations et disponibilités.

¶ POST /api/volunteers : Enregistrement d'un nouveau bénévole en saisissant ses

compétences, ses disponibilités, ainsi que ses informations personnelles (prénom et

nom).

¶ PUT /api/volunteers/{id} Υ aƛǎŜ Ł ƧƻǳǊ ŘŜǎ ƛƴŦƻǊƳŀǘƛƻƴǎ ŘΩǳƴ ōŞƴŞǾƻƭŜ ŜȄƛǎǘŀƴǘΣ

notamment ses compétences ou sa disponibilité.

- Pour le service « feedbackService», les fonctionnalités suivantes ont été implémentées:

6

¶ POST /api/feedbacks Υ {ƻǳƳƛǎǎƛƻƴ ŘΩǳƴ ƴƻǳǾŜƭ ŀǾƛǎΣ ŀǾŜŎ ǳƴ ŎƻƳƳŜƴǘŀƛǊŜ Ŝǘ ǳƴŜ

ƴƻǘŜ ŘΩŞǾŀƭǳŀǘƛƻƴΦ

¶ DELETE /api/feedbacks/{id} Υ {ǳǇǇǊŜǎǎƛƻƴ ŘΩǳƴ ǊŜǘƻǳǊ ŘΩŜȄǇŞǊƛŜƴŎŜ ǎǇŞŎƛŦƛǉǳŜ Ŝƴ

fonction de son identifiant.

tƻǳǊ ŎƘŀǉǳŜ ǎŜǊǾƛŎŜΣ ƭϥƛƳǇƭŞƳŜƴǘŀǘƛƻƴ w9{¢ ƎŀǊŀƴǘƛǘ ǳƴŜ ǎƛƳǇƭƛŎƛǘŞ ŘΩƛƴǘŞƎǊŀǘƛƻƴΦ [Ŝǎ ŎƭƛŜƴǘǎ

(comme le frontend en JavaScript) peuvent interagir avec le backend, en envoyant des

requêtes HTTP standard et en recevant des réponses formatées en JSON.

! ǘƛǘǊŜ ŘŜ ŎƻƳǇŀǊŀƛǎƻƴΣ ƭΩŀǊŎƘƛǘŜŎǘǳǊŜ {h!t ǇƻǎǎŝŘŜ ǳƴŜ ǎǘǊǳŎǘǳǊŜ ŀǎǎŜȊ ǊƛƎƛŘŜΣ ōŀǎŞe sur

·a[Ƴŀƛǎ ǇŜǊƳŜǘ ŘΩşǘǊŜ Ǉƭǳǎ ŦƻǊƳŜƭΦ /ŜǇŜƴŘŀƴǘ ŜƭƭŜ ǊŜǎǘŜ ǘƻǳǘ ŘŜ ƳşƳŜ ŎƻƳǇƭŜȄŜ Ŝǘ Ŝǎǘ

peu ŦƭŜȄƛōƭŜ Ŝǘ ŀƛƴǎƛ ǊŜƳŜǘǘǊŜ Ŝƴ ŎŀǳǎŜ ǎŀ ŦŀŎƛƭƛǘŞ ŘΩǳǘƛƭƛǎŀǘƛƻƴΦ

w9{¢Σ Ŝƴ ǎŜ ōŀǎŀƴǘ ǎǳǊ ŘŜǎ ǎǘŀƴŘŀǊŘǎ ǘŜƭ ǉǳŜ W{hb Ŝǘ I¢¢t ǇŜǊƳŜǘ ŘΩşǘǊŜ Ǉƭǳǎ ŦƭŜȄƛōƭŜ ŀǾŜŎ

ǳƴŜ ƛƴǘŜǊŀŎǘƛƻƴ ŘŜǎ ǊŜǎǎƻǳǊŎŜǎ Ŝǘ ŘŜǎ ǊŜǉǳşǘŜǎ Ǉƭǳǎ ƛƴǘǳƛǘƛǾŜǎΦ /ΩŜǎǘ ǳƴ ŎƘƻƛȄ ŘΩŀǊŎƘƛǘŜŎǘǳǊŜ

plus adapté pour des systèmes distribué avec une rapidité et une scalabilité plus importante

qu'avec SOAP.

bƻǳǎ ŀƭƭƻƴǎ ƳŀƛƴǘŜƴŀƴǘ ƴƻǳǎ ŎƻƴŎŜƴǘǊŜǊ ǎǳǊ ƭŜ ŘŞǾŜƭƻǇǇŜƳŜƴǘ ŘŜ ŎŜǘǘŜ ŀǇǇƭƛŎŀǘƛƻƴ ŘΩƻŦŦǊŜ

Ŝǘ ŘŜ ŘŜƳŀƴŘŜ ŘŜ ōŞƴŞǾƻƭŀǘ Ƴŀƛǎ ŘΩǳƴ Ǉƻƛƴǘ ŘŜ ǾǳŜ ƳƛŎǊƻ-services, qui est une forme

hybride des deux architectures précédentes, mais basé principalement sur la vision

ressources de REST.

7

3. D®veloppement de lôapplication sous forme de

 micro-services

Les micro-services constituent une évolution de notre projet. Ils consistent à décomposer une

application en services autonomes et déployables indépendamment. Dans ce projet, chaque

service (« User Management », « Volunteer Management », « Request Management », «

Feedback Management ») est implémenté en tant que micro-service isolé.

Chaque micro-service dispose de sa propre base, de son propre cycle de développement et de

déploiement. Par exemple, le service « User Management » est déployé sur le port 8090,

tandis que « Volunteer Management » est accessible sur le port 8092. Les micro-services

communiquent entre eux via des requêtes HTTP RESTful. Ainsi, le service « Request

Management » peut récupérer des utilisateurs en interrogeant l'API du service « User

Management ».

a) Création des micro-services avec Spring Boot

Tout commence par une première version utilisant Spring Boot avec une unique dépendance

liée au service web. Un aspect important de cette architecture est l'utilisation de Spring Boot,

qui facilite la création de micro-services.

b) Nos micro-services

Chaque micro-service est configuré de manière indépendante dans un fichier

application.properties :

8

¶ userManagement:

Ce premier service a pour but dΩajouter un utilisateur et de lui attribuer un statut USER,

VOLUNTEER ou ADMIN à lΩadresse localhost:8090.

Dans un premier temps la base de données, nΩétant pas fonctionnelle nous avons lancé nos

services sans quΩƛƭ ȅ ait dΩŜƴǊŜƎƛǎǘǊŜƳŜƴǘ ƻǳ ƭŜŎǘǳǊŜ ŘŜ ǘable. Par la suite nous avons ajouté le

lien avec la base.

9

Pour finir, nous avons ajouté de lΩHTML, CSS et JavaScript pour faire en sorte que lΩapplication

soit davantage interactive.

¶ userRequestService:

Ce micro-service permet dΩŀǎǎƻŎƛŜǊ Ł ǳƴ ǳǘƛƭƛǎŀǘeur une requête. Une fois la demande

effectuée il y a le statut qui peux être modifier pour faire en sorte de connaitre ƭΩŀǾŀƴŎŜǊ.

10

Changement du status de la requête numéro 1 :

Depuis cette interface, il est possible de sélectionner un utilisateur présent dans la base de

données et de lui envoyer une requête. Le bouton submit est associé à la requête POST et

get all user à GET.

¶ volunteerManagement :

Pour ce micro-service, il est possible pour un volontaire dΩentrer ses compétences et ses

disponibilités. Le but étant quΩun user ait accès aux volontaires disponible pour le contacter.

11

12

feedbackService:

LΩimplémentation de ce service permet de récupérer les requêtes validées et donner la

possibilité à lΩuser de faire un feedback sur le travail effectué.

13

4. Automatisation dôun micro-service de lôapplication

Une fois l'architecture logicielle distribuée, basée sur l'interaction de plusieurs microservices,

mise en place, nous avons implémenté l'intégration continue (automatisation de la

construction et des empaquetages) ainsi que le déploiement continu. Pour cela, nous avons

utilisé Microsoft Azure comme plateforme de développement et Github Actions pour gérer

l'intégration et le déploiement. Nous avons choisi de travailler sur le microservice

userManagement.

Après avoir créé un compte Microsoft Azure, nous avons créé un groupe de ressources nommé

MSDeployment-group, ainsi qu'une application web avec l'instance userManagementMS-

Instance.

Ensuite, nous avons généré un fichier

de script YAML dans le dépôt GitHub

pour automatiser le processus. Une

dernière configuration du fichier

était nécessaire pour associer le nom

du micro-service dans le script du

workflow. Une fois cette étape

terminée et le workflow compilé, le

déploiement était complet. En

effectuant une requête GET sur ce micro-service, le workflow se déclenchait comme prévu.

