INSTITUT NATIONAL
‘ DES SCIENCES

APPLIQUEES

TOULOUSE

TD Service Architecture

SOA i REST - Microservice

Cédric Chanfreau

Timothé Bigot

Promotion 58¢ 2024 / 2025

L1010 (U Lo 110] o TP 2

1. ATCHITECTUIE SOAR.......oii ittt e e 3
a) Définition de SOA (Architecture OreNtEe SEIVICE)........uuurriiriiriiiirieeriereere e e ee e e eeeea e e e ee e 3
b) ChoiX de SOA POUN 1€ PrOJEL.....ciiiiiiee e e e e e e e aaaaa s 3
C) OrganiSatioN ES SEIVICES........cuuuuriiieeiiiitriereeeee s et e e e e e s s e e e e e e e e s asnrr e e e e e e e s anbrrreeeeeesaann 3

2. ArChITECIUIE REST ettt e e e e e e e e e s rne e e e e e e anes 5
) DEfINIION AU REST ... e s s e e s s e s s s e e s s aannrnnes 5
D) SEUCLUIE AU PrOJEL....coiiieeieee 5

3. Développementde QI LILIX A OF G A2y -sef®ided...T.2 NN.S...RS...Y.ACGNEP
a) Creéation des micrservices avec Spring BaQt............occcciiiiiiiiiiiiieiiiee e 7
D) NOS MICTBSEIVICESceiiiiiiiiie ettt e e e e e e e e e s e e e e e e e nnnee s 7

ned 1 dzi2Yl GAaaABENDK OBRQ®B..Y.OANRI . AQL.GOA2Y............ 13

(O70] 0 [0} 1151 o] o HE PP PPPPPTOPPRPPPPPRRR 14

W

Introduction

[§ odzi RS O0Sa& GNF @l dzE RANARISE Said RQF LILIX Alj dz
architectures SOAP, REST et le développement de-secvices, a travers un projet concret.

/'S LINR2S(i O2yaAraiasS Sy fI ONBI (anthyes BdnyfeS | LILIKE
RS NBLR2YRNB t RS&a RSYIFIYyRSa RQFARS T2N¥NdzZ SSa
fonctionnalités ont été implémentées dans le cadre de ce projet, et ce compte rendu présente

notre parcours de développement en détaillant les hoi RQF NOKA G SOl dzZNBa s RI vy
comprendre leurs avantages et limitations.

En consacrant un temps significatif a la réalisation des tutoriels, nous avons pu approfondir

notre compréhension des concepts sgasents aux architectures SOAP et REST, et ainsi les
YSGGNB Sy dzdzONBE SFTFFAOFOSYSyl RIrngservigeg addsS | LILJ
RSOSt2LIJS Si (Sadasz @SSO dzyS FaGaldSyadazy LI NI .
Azure pour I'un des micrservices.

'\,

"\n.“' ,“”‘“ —

Volunteer application

1. Architecture SOAP

a) Définition de SO@Architecture orientée servige

Une architecture orientée services (SOA) se distingue par sa capacité a décomposer une
application en composants autonomes, appelés « services », qui communiquent via des
interfaces standardisées, généralement via des protocoles web comme SOAP (Simgtie Obje
Access Protocol). Chaque service dans une architecture SOA offre une fonctionnalité
spécifique et peut étre consommeé indépendamment des autres services. Ces services sont
souvent accessibles via des APIs, et les messages échangés sont typiquemergsfermat
XML, garantissant une grande interopérabilité entre différentes plateformes. L'utilisation de
WSDL (Web Services Description Language) permet de décrire les services et leurs interfaces,
facilitant leur utilisation et leur intégration par d'autresg@jcations.

b) Choixde SOA pourd projet

[S aSNBAOS ¢ !aSNJalyl3SYySyd n aQ200dzJS RS f
des utilisateurs dans la base de données. Le service « Volunteer Management » gere les
informations relatives aux bénévoles, telles que leurs compétences airdisfités. Enfin, le
ASNIAOS ¢ wSldzSaid alyl3aSySyd n Sad NBaLRyalo
Cette organisation permet de rendre chaque service autonome et réutilisable. Par exemple,

le service de gestion des bénévoles peut étre utilisé par plusieurs autres applications sans
RSLISYRNBE RANBOGSYSyd RS f I 3ISadidexgalerRestda dzi A f
flexibilité : si une fonctionnalité doit étre modifiée ou ajoutée, il suffit de mettre a jour le

service correspondant.

c) Organisation des services

5l yada £S OFRNB RQdzyS | NOKAGSOUdzNBE {h!t s y2dzi
21 @1's Llzh & dzy Of ASyds FFAY RS LR dzO2AN) f QAYy @2

L'architecture SOAP adoptée pour le serveur de notre application d'aide aux personnes
vulnérables a été testée et validée en utilisant le WSDL (Web Services Description Language).
Le WSDL est un langage basé sur XML permettant de décrire l'interfaced/ioe sveb

Nous avons créé une classe AnalyserChaine, ainsi qu'une AlaaleserChaineApplication

afin de pouvoir lancer le service web

package fr.insa.soap;
import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
@WebService(serviceName="analyzer")
public class AnalyserChaineWs {
@WebMethod(operationName="compare")
public int analyser(@ebParam(name="chain") String chaine) {
return chaine.length();
}
package fr.insa.soap;
import java.net.MalformedURLException;

import javax.xml.ws.Endpoint;

public class AnalyserChaineApplication {

public static String host="localhost";
public static short port =8089;

public void demarrerService() {
String url="http://"+host+":"+port+"/";
Endpoint.publish(url, new AnalyserChaineWS());

public static void main(String [] args) throws MalformedURLException {

new AnalyserChaineApplication().demarrerService();
System.out.println("Service a démarré");

~ A

Nous avons ensuite testé le codeRriS d adza> t f QFARS RQdzy 6So6 &S|
2 {5 Rdz ASNPAOS ljdz8 tQ2y @ASyd RS
importantes.

Une fois lancé, nous pouvons observer les requétes SOAP envoyés et recus et confirmer que
le code fonctionne correctement, le bon nombre de caractére étant retourné.

+ SOAP Request Envelope:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
x¥mlns:gq0="http://soap.insa.fr/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema~instance">
<soapenv:Body>
<g0:compare>
<chain>aaaaaa</chain>
</q0:compare>
</soapenv:Body>
</soapenv:Envelope>

~ SOAP Response Envelope:

<S:Envelope
xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<ns2:compareResponse xmlns:ns2="http://soap.insa.fr/">
<return>6</return>
</ns2:compareResponse>
</S:Body>
</S:Envelope>

W

2. Architecture REST

a) Définitiondu REST

L'API REST (Representational State Transfer) a été choisie pour permettre la communication
entre les services et pour exposer leurs fonctionnalités aux clients. REST est un style
architectural qui s'appuie sur les méthodes HTTP standards (« GET », «, ROBIT»», «
DELETE ») pour manipuler des ressources. Dans ce projet, chaque ressource correspond a un
élément essentiel : utilisateurs, bénévoles ou requétes.

b) Structure di projet

Qur la partie REST, nous nous sorsmencipalement concentisa dzNJ £ I ONBlF A2y R
S0 wSail t LIINA NI IR CRI®/ § QO yI Giizalj SaubopuiS@itarfaze G S | @ S
graphique
- Pour le service WYserManagement, lesfonctionnalitéssuivanes ont été implémentés :

1 GET /api/usersrécupération de tous les utilisateurs.

1 POST /api/usersajout d'un utilisateur.

1 DELETE /api/users/{idsuppression d'un utilisateur par ID.

- Pour le service userRequestServicg lesfonctionnalités suivanes ont été implémentés :

1 GET /api/requestsRécupération de toutes les requétes existantes, permettant un
suivi centralisé des demandes.

1 POST /api/requestsCréation d'une nouvelle requéte en associant un utilisateur et
en décrivant la nature de la demande.

T PUT /api/requests/{id}/status Mise a jour du statut d'une requéte (par exemple : en
attente, validée, rejetée, complétée).

- Pour le service ¥olunteerManagemens, lesfonctionnalitéssuivanes ont été
implémentées :
1 GET api/volunteers: Récupération de la liste de tous les bénévoles enregistrés, avec
leurs informations et disponibilités.

1 POSTdpi/volunteers: Enregistrement d'un nouveau bénévole en saisissant ses
compétences, ses disponibilités, ainsi que ses informations personnelles (prénom et
nom).

1 PUT/apilvolunteers/{id}Y aAasS t 22dz2NJ RSa AyTF2NXNI(A2ya
notamment ses compétences ou sa disponibilité.

- Pour le service feedbackService, lesfonctionnalitéssuivanes ont été implémentés:

W

1 POST /apiffeedbacké { 2dzYAaadA2y RQdzy y2dz0St | gAasz |
y20iS RQSOIftdzZ GAZ2Yy ®

1 DELETE /api/feedbacks/{dd} { dzLJLINB&&A 2y RQdzy NBG2dzNJ RQSE
fonction de son identifiant.

t 2dzNJ OKLF ljdzS aSNIWAOS:E fUAYLI SYSylUldAz2y wo{¢ =
(comme le frontend en JavaScript) peuvent interagir avec le backemdenvoyant des
requétes HTTP standard et en recevant des réponses formatées en JSON.

Il GAGNB RS O2YLI NI} Aaz2y> fQF NOKAGSOlkedaNBE { h! t
-al] YFA& LISNXYSGO RQsiUNB LI dza FT2NXStd / SLISYRI
peuft SEA0ES SG FAyar NBYSGGNB Sy Ol dzas ab ¥

O

wo9{¢> Sy &S olalyid adz2NJ RSa adl yRFNRa GSft | dzS
dzy S AYUSNI OldA2y RS& NBaazdz2NOSa SG RS&a NBIjdzs i
plus adapté pour des systemes distribué avec une rapidité et une ditélahus importante

gu'avec SOAP.

b2dza Fftf2ya YIAYGSylyld y2dza 02y OSy G NBNJ & dzNJ f
SiG RS RSYIYRS RS 0SyS@2f beivices,lqhi ést uReliatmpe L2 Ay i R
hybride desdeux architectures précédentemais basé principalement sur la vision

ressources de REST.

W

3. D®vel oppement de | 6applicat
micro-services

Lesmicro-services constituent une évolutiode notre projet Ils consistent a décomposer une
application en servicesutonomes et déployables indépendamment. Dans ce projet, chaque
service (« User Management », « Volunteer Management Reguest Management, »
FeedbackManagement») est implémenté en tant queicro-serviceisolé.

Chaquanmicro-servicedispose de sa propre basge son propre cycle de développement et de
déploiement. Par exemple, le service « User Management » est déployé sur 18096yt

tandis que « Volunteer Management » est accessible sur le 882 Lesmicro-services
communiquent entre eux via des requétes HTTP RESTful. Ainsi, le service « Request
Management » peut récupérer des utilisateurs en interrogeant I'API du service « User
Management ».

a) Création desnicro-services avec Spring Boot

Tout commence par une premiére version utilisant Spring Boot avec une unique dépendance
liée au service wellJn aspectmportant de cette architecture est |'utilisation de Spring Boot,
qui facilite la création denicro-services.

Project Language
O Kotin QO Groovy
Q Gradle - Kotlin ~ © Maven

Spring Boot
O 3.4.2 (SNAPSHOT) O 338(SNAPSHOT) QO 337

Project Metadata

Group frinsa.apy

Artifact userManagement

Name userManagement

Description Demo project for Spring Boot

Package name frinsa.app.userManagement

Packaging O War

Java Q23 Q21

b) Nosmicro-services

Chaque micro-service est configuré de maniere indépendante dans un fichier

application.properties

I userManagement

Ce premier sevicea pour but d@jouter un utilisateur et de lwuattribuer un statutUSER
VOLUNTEER ou ADMiI&dressdocalhost809Q

~ |3 userRequestService [APP master]
~ (® src/mainfjava
~ f frinsa.app.userReguestService
> [2} Request.java

> [21 RequestControllerjava
> [4, RequestDto.java
> [J} RequestService.java
» [# RequestStatus.java
>[4 UserRequestServiceApplication.javi
POST http:iilocalhost:B090/u TR a localhost:8091/api/reque X localhost:8090/users
it http://localnost:8090/users < C @ O D localhost:2090/users
— JSON Données brutes En-tétes
POST v hitp://localhost:8090/users Enregistrer Copier Tout réduire Tout développer T Filtrer le JSON
o
Params Authorization Headers (8) Bodye Pre-requestScript Tests Settings id: 1
firstName "Cedric"
none form-data x-www-form-urlencoded @ raw binary JSON lastName “Chanfreau”
role "admin®™
1 g
2 "firstName": "Cedric",
3 "lastName": "Chanfreau”,
4 "role "admin®
5

Body Cookies Headers(5) TestResults

Pretty Raw Preview Visualize BSON v T
1
2 "id*r 1,
3 "firstName": "Cedric",
4 "lastName “Chanfreau”,
5 “role": “"admin”
& i

Dans urpremier temps la base ddonnées n@tant pas fonctionnde nous avos lana nos
servicessars qu Adit dOBS y NB 3 A & (i NB Y Sablé. P& brsuitrdBavodaputéeS
lien avec la base

[a=N

Edit Source Refactor Navigate Search Project Run Window Helf
- Aow o . Bibctiscasiicini D e ciintuabuncciiill S chanfreau@srv-tp05: ~/Bureau = o x
. http://localhost:8090/api/users - My Workspace Fichier Edition Affichage Recherche Terminal Aide
File Edit View Help | User |
| user |

Home Workspaces v Explore 2 rows in set (0.00 sec)

You are using the Lightweight API Client, sign in or create an account to work with collections, environments and|™YS1> SELECT * FROM User;

| id | first name | last name | role |
http://locainost:8090 PO = - Sl - O SR
| 1] John Doe | volunteer |
N | 2| Cedric Chanfreau | admin |
* http://localhost:8090/apl/users + + . +- + -+
2 rows in set (0.00 sec)
O http:// i use
0 tp://locaihost:8090/apl/users mysql> SELECT * FROM User;
P s EF Ry FRNE S SR S PRTCREERERS +
Authorizat Headers (8 Body » eque Test | id | first name | last name | role |
none form-data x-www-form-uriencoded @ raw binary JSON = 11 John Doe | volunteer |
| 2| Cedric Chanfreau | admin |
R S e S S —
: TR € -2 rows in set (0.00 sec)
las reau”, SON Cmysql> [}
r i
3 Enregistrer Copler Tout réduire Tout développer

iibernate: insert into user (first name,last name,role) values (?7,?,7)
nsert into user (first name,last_name,role) values (?)
: insert into user (first name,last name,role) values (?,?,?)
iibernate: select ul 0.id,ul @.first name,ul 6.last name,ul 0.role from user ul @

W

Pour finir, nos avons ajoudde KHTML, CSS et J&dpt pour fare ensorte que @pplication
soit davantage interactive.

RAG S O # 155 FREJ§ 0 #1553
i & BEArciS (I NoNodais ® Microser | UserMan x | localhoste locahest 4 v 26 @) B BarcHis C)NoNodi: @ Microser. | UserMan x | localhost8e localhost + a xf
Fe c e O D localhost L) O @0 =y o« ca O D localhost %W @8 =
User Management i, User Management b
Add User © Add User e
B | =
E
Admin v | | Add User FIrst N; Last Namy Admin ~ | | Add User
Users Users
Get Al Users Gt Al Users
+ 1: Cedric Chanfoau (admin) x
¢
i
{
sa209.. @ (hupocalnost:8090/ @az0s.. & (hapsocainost0m 5

I userRequestService:

Cemicro-servicepermet dQ I & & 2 OA S Neurtune degjuétdzing fbidadémande
effectuéeil y ale statutqui pew étre modifier pour faire esortede connaitref QI @.I y OS NJ

~ iz = userRequestService [APP master]
~ [> src/mainfjava
~ f#; = frinsa.app.userRequestService
> [5 Request.java
[RequestController.java
[% RequestDto.java
[% RequestService.java
[RequestStatus.java

R

[% UserRequestServiceApplication.jav

i http:/flocalhost:8091/aplirequests = localhost:8091/apifreque x| +
o« localhost: 8t
POST - http:/flocalhost:8091/apifrequests C a (O
~ JSON Données brutes En-tétes
3 A i ders (Pre-req Seript - Settings -
Params Authorization Headers (8) Body ® re-request Script Tests Settings Enregistrer Copier Tout réduire Tout développer ¥ Filt
none form-data x-www-form-urlencoded @ raw binary JSON e
id: 1
1 I description "Aider & faire les courses"
2 "description”: "Finir le projet” status: "WAITING"
3 o v1:
id: 2
description "Finir le projet"
status: "WAITING"

Body Cookies Headers (5) TestResults

Pretty Raw Preview Visualize JSON =
1 H
2 "id": 2,
3 "description”: "Finir le projet”,
a4 "status": "WATTING"
5 B

W

Changement d status de la requéte maéro 1:

PUT http:/flocalhost:8091/ap

\ (=) localhost:8091/apifreque x | +
T http:/flocalhost:8091/apifrequests/1/status
L &« =5 C o Q [localhost:8091/api/r
PUT i http://localhost:8091/api/requests/1/status
| JSON Données brutes En-tétes
params Authorization Headers (8) Bodys Pre-requestScript Tests Settings Enregistrer Copler Tout réduire Tout développer | Filtrer le JSON
v o:
none form-data x-www-form-urlencoded @ raw binary JSON ~ id: 1
description: "Aider a faire les courses”
1 "VALIDATED" status “VALIDATED"
2 -1
id 2
description: "Finir le projet®
status "WATTING"
Body Cookies Headers (5) TestResulis
Pretty Raw Preview Visualize JSON ~ =
1
2 "id o1,
3 "description®: "Aider & faire les courses”,
a "status": "VALIDATED"
5 B
QO DO localhost 1 %

Create User Request
Choose a User and Create Request

Select User:

Select a user v

Request Description:

Submit Request

Existing Requests

Get All Requests

Depuis cette interface, il est pobl de sébctionner un utilisatur présent dans la base de
donnéeset de i envoyer une regéte. Le bouton submit estssocé ala requée POST et
get all user a GET

1 volunteerManagement

Pour ce micro-service il est pasiblepour un volontaire @ntrer ses compétence®t ses
disponibilités Le but étant q@n user ait accés aux volontaires digfme pourle contacter

W

~ [#3 = volunteerManagement [APP master]

POST http:/flocalinost:80021 +

@ hitpifiocalhost8092/volunteers

M

2 = srcfmainfjava
e

T

B

Feedback.java
Volunteer.java
VolunteerDto.java

2
%
5
%

R

VolunteerRessource.java

= frinsa.app.volunteerManagement

VolunteerManagementApplication.j

& localhost loc 1fapifrequ x localhost:8092/volunte x | 4
POST ntip:/flocahast 8092/ volunteers & C @ QO D lecalhost:8092/volunteers A
Authorization Headers (8) Body e estSeript Tests S JSON Données brutes En-tétes
Enregistrer Copier Tout réduire Tout développer Filtrer le JSON
none @ form-cata @ x-www-fom-urlencoded @ raw @ binary JSON -
1
i aut
2 firsthame™: "Paul o
3 lastName®: “Louse®,) N "
a "skills®: “Maintenance PK INSA", skills Maintenance PK INSA
5 availability®: “Lundi, Mazdi, Mercredi® availability Eundi, Werdi, Rercredi
o 0l active true
7
Body Cookies
Pretty R Preview Visualize JsoN =
1 |
5 P
s "Louse”,
s Maintenance PK INSA",
L i "Lundi, Mardi, Mercredi®,
s b
PUT httpi/flocalhost:8092/vol wae
[
PUT 4 hitp:
N = i . o 2
Params Authorization Headers (7) Body Pre-requestScript Tests Settings (=] localhost:8090, X localhost:8091, X localhost:8092
none form-data x-www-form-urlencoded @ raw binary JSON + « = C O DO localhost:8092/volunteers
1 JSON Donnéesbrutes En-tétes
Enregistrer Copier Tout réduire Tout développer 7 Filtrer e JSON
o
id: 1
firstame: “Paul"
lastName: "Louse”
skills: “Maintenance PK INSA"
availability: “Lundi, Mardi, Mercredi"
- active: false
Body Cookies Headers (5) TestResults
vl
_ id: 2
Pretty Raw Preview Visualize JSON v =)
firstame: “Jena"
1 il lastName: "Duj"
2 skills: “Appeler”
3 availability: “Samedi
a
5
6 "availability”: "Samedi®,
7 ‘active”: false
8 g

W

feedbackService:

w [z1 = feedbackService [APP master]
~ (% = src/mainfjava
~ fs = frinsa.app.feedbackService
» [Feedback.java
» [# FeedbackDto.java
» |5 FeedbackRessource.java
» [J) FeedbackServiceApplication.java

[http:/flocalhost:8094/feedbacks?volunteerld=1&userld=2

POST ~ http:/flocalhost:8094/feedbacks?volunteerld=1&userld=2 El localhost:8094/feedback % AL
Params & Authorization Headers (8) Body = Pre-request Script Tests Setlings “— (&7 @ O [Wllocalhost:8094/feedbacks)
none form-data x-www-form-urlencoded @ raw binary JSON ~ JSON Données brutes En-tétes
B Enregistrer Copier Tout réduire Tout développer T Filtrer le JSON
2 "comments”: "Trés bonne expérience, le bénévolat a été enrichissant.”, - 8:
3 "rating": 5 volunteerId 1
4 1 userld 2
5 comments “Trés bonne expérience, le bénévolat a éte enrichissant.”
rating 5
Body Cookies Headers (3} TestResults
Pretty Raw Preview Visualize JSON =
1 i
2 "volunteerTd”: 1,
3 "userId”: 2,
4 "comments": "Trés bonne expérience, le bénévolat a été enrichissant.”,
5 "rating": 5
&6 §

Ldmplémentation de ce serge permet de récupérdes requétes validéest donner la
possibilitéa ser defaire un feedback sur le travail effectué.

W

4 Aut omati satsieornvi c€@u nd emilct aoy

Une fois l'architecture logicielle distribuée, basée sur l'interaction de plusieurs microservices,
mise en place, nous avons implémenté lintégration continue (automatisation de la
construction et des empaquetages) ainsi que le déploiement continu. Pdayrroeus avons
utilisé Microsoft Azure comme plateforme de développement et Github Actions pour gérer
l'intégration et le déploiement Nous avons choisi de travailler sur le microservice
userManagement

Apres avoir créé un compte Microsoft Azure, nous avons créé un groupe de ressources nomme
MSDeploymentgroup, ainsi qu'une application web avec l'instaneggerManagementMS
Instance

Ensuite, nous avons généré un fichier
de script YAML dans le dép6t GitHub
pour automatiser le processus. Une
derniere configuration du fichier
était nécessaire pour associer le nom
du micro-servicedans le script du
workflow. Une fois cette étape
terminée et le workflow compilé, le
déploiement était complet. En
effectuant une requéte GET sur ecro-service le workflow se déclenchait comme prévu.

