Rapport de projet temps réel 4AE

Nom du bindbme : Chanfreau Cédric / Paris Simon

Enseignant de TP : Monsieur Lasguines



Abstract :

This report presents the design and implementation of a real-time embedded system
for a robotic platform. The primary objective is to achieve seamless synchronization
and communication between various tasks, including battery monitoring, movement
commands, robot status updates, image capture, and arena calibration. We employ
global variables protected by mutexes and binary semaphores to ensure data integrity
and task synchronization. Key components include a battery monitoring task,
movement command task, camera capture task, and arena calibration task, each
synchronized using appropriately named semaphores. The system architecture, both
logical and physical, is detailed, illustrating the integration of these tasks and the
mechanisms for efficient inter-task communication. The implementation ensures
robust and real-time performance, crucial for the intended applications of the robotic
platform.



Table des matieres

1 o o 11 Tox {0 o PSPPSR 4
I.  Architecture fONCHONNEIG...........ooo i e e e e e e e e e e e 5
I.1 Recensement des fONCLIONS...........oiiiiiiiiec e e e e e e e e e e e e e e e e e e e e e e e e aeeeeens 5
1.2 Architecture fonctionnelle StatiQUe............ccvvviiiiiiiiiiiee e 7
1.3 Table des exigences sur chaque fONCHOM...........cccviviiiiiiiiiiiieer e, 11
I.4 Définition de la séquence d'exécution des foNCtiaNS .........ccoiiieiiiiiiiee i, 12
[I.  ArChItECIUIES PRYSIQUE. .. ... eiiiiiieeei ittt e e e e e e e s s e e e e e s e eeeas 13
LLdM [/ K2AE SG 2dzZa0AFTAOFGAZ2Y RQdzyS 2NHIYyA&l GAZ2Y
fonctions en tacheskaractérisation des tACheS..........ccccccciiiiiiiiiie e 13
[1.2 Allocation des fONCtioNS 8UX COMPOSANES. &u...ceeiuurrirreeeeeeiiiirreeeeeesaiireeeeee e s s snrneeeeeeean 17
LLPo 5AF3INF YYS..RQLNDKAGLSOL.AINS. ..., 18
I1.4 Table des exigences sur chagque tache................ooo oo 19
I1.5 Choix et justification des moyens de communication et de synchronisation................. 20
11.6 Architecture phySique STAtIQUE........ooviiiiiie e 22
[ll.Codage et livraiSoNS INCrEMENTAIES. .........ooiiiiiie e 23
LLL®M 5AF3INFYYS RQLNODKAGLSON.MNE...1..K&.4.A.1j..dzS.23
1 B2 @1 g o1 = Lo 11 (=11 (F = 10 3 O PPRRP 24
111.3 Stratégie de codage, Vérification et iNtEgration.............cccccvvviiuiiiiiiiriiiieee e e 27
IV Analyse et validation du logiciel livré par rapport aux eXigences..........cceevvveeevrieeeeesnnne 32
RV O] 41 41T o] =TT = S 33



Introduction

Le projet de conception et de développement d'un superviseur pour un robot mobile constitue
une étape essentielle dans notre parcours académiqued 6 i ng®ni eur.Réa®Bedahsoppeur
le cadre du cours de 4°™ année du département de Génie Electrique et Informatique de I'INSA
de Toulouse, ce projet offre I'opportunité d'appliquer les connaissances théoriques acquises
lors du cours de temps réel a une problématique concréte de l'ingénierie logicielle embarquée.

L'objectif principal de ce projet est de coder et de mettre au point un superviseur pour un robot
mobile, permettant ainsi de piloter a distance les mouvements du robot, de surveiller son état
de batterie, et de contrbler la diffusion des images capturées par une caméra.

La réalisation de ce projet se déroule en plusieurs étapes, allant de la spécification des
fonctions du superviseur a la conception de son architecture logicielle, en passant par
l'implantation du code et les phases de tests. Les travaux pratiques et dirigés permettent
d'aborder progressivement les différentes composantes du projet, offrant ainsi une approche
méthodique et structurée du processus de développement logiciel.

Ce rapport présentera en détail les différentes phases du projet, en mettant I'accent sur les
choix de conception, les difficultés rencontrées et les solutions apportées. Il sera également
l'occasion de mettre en lumiére les compétences acquises lors de la réalisation de ce projet,
tant sur le plan technigue que sur celui de la gestion de projet et du travail en équipe.



l. Architecture fonctionnelle

.1 Recensement des fonctions

Vous trouverez ci-dessous un recensement des fonctionnalités du projet. Les noms des
fonctions et les entrées/sorties ne sont la qu'a titre indicatif. Les fonctions décrites ci-dessous

ne repr®sentent pas | 6i mpl ®mentation r ®el
référence.
Nom de la Description du comportement Entrées Sorties
fonction
Démarrer Lancer serveur Evénement Données
serveur Si echea@fficher un message et stopper le  Start inputStream
programme sion produire serveur démarré Evénement
Serveur démarré
Connecter au attendre serveur démarré Evénement Evenement

moniteur

Traiter
message du
moniteur

Etablissement
de la
connexion
avec le
moniteur
Mettre en
place la
communicatio
n avec le
robot

appeler AcceptClier8 i I G G Sy RN.
azo01S8idQ
d&A 21 LINRPRdAzZANB wO2y

'd0SYRNB WwWO2yySEAZ2Y
Tant que
Attendre message inputStream (Read)

- Si message = ouvrir com rob®t ouvrir
comRobot

- Si message = ouvrir cameta ouvrir
camera
- Si message = fermer cameafermer
camera
- Si message = start rob6t start robot

- Si message = cherche aréhestart
recherche aréne

- Si message = cherche aré&hestart
rechercherobot

- Sinon si message = ordre de mouvement
C mise a jour mouvement

- Attendre serveur démarré

- Appeler AcceptClient et attendre ouvrir
socket

- Si oui connexion établie

F'GGSYRNB W2 dz@NA NJ O;
Mettre en place la communication avec l¢
robot

Si la communication est ok poster
YyYySaal3asSe2y2y!l/YQ
t2aYSHAWISc2az2yb! /
Mettre a jour le statue de la com robot

Serveur démarré
Ouvrir socket

Evenement
connnexion établie

Evénement
ouvrirSocket
serveurDemarre

Evénement
ouvrir comRobot

connnexion établie

Données
Mouvement
Evénement

Ouvrir comRobot
Ouvrir camera
Fermer camera

Start robot

start recherche aréne
start rechercheobot

Evénement
connexionMonitor

Données
statue com robot
Message Poster

e

et



Démarrer
Robot

Déplacer
robot

Envoyer
message au
moniteur

Lire level
batterie

Ouvrir/fermer
la camera

Afficher Image

Chercher
Aréne

Cherche
Position

I GGSYRNB W{dF NI NP«
{A W{Ol GdzS O2Y NRO;
Envoyer ordre de démarrage et mettre a
22dzNJ WNRB 623G RSYIF NNJ
Toute les 100ms

{A WNRo2I

f AN WY2dzo
sinon rien

' GG§SYRNB WO2yySEA2)
Tant que

Attendre messageToMon

Envoyer le message au superviseur

Fin tant que

Toute les 500ms

{A WNRO62{ RSYlINNBQ
Demander niveau de batterie au robot et
le poster pour le moniteur.

Sinon

Rien

GG SYRNB W2 dz@NR NJ Ol
OF YSNI Q

Ouvrir ou fermer la camera

Envoyer un message au moniteur
aSGidNB F22dzNJ WwOI YS|I

RSYI NNBQ
SYSyiQ S

''GG6SYRNB W! FTFAOKSNJ
Toute les 50ms

{A WOIF YSN} 2dz@SNI Q
Prendre une image du flux de la camera

{A WFEFFAOKSNI I NBy ¢
553a4AYSNI I NByS adz
Fin du si

t 23 0SNJ f QAYI3S Lk dz
GG SYRNB waidl NI NBC
{A WOIFYSNI 2dz@SNIQ
WwOF YSN} 2dz@SNI I FI

Prendre une image du flux de la camera
lyrfteasSNI f QAYIF3S Si
La poster pour le moniteur

l'GGSYRNB fI NBLRYyAS
arh 21 WIEFFAOKSNI I NB
I NBYS I' Tl dzEQ

'3 SYRNEBE WaNER oNgii (NS C
{A OFYSNI 2dz8SNIQ U
Prendre une image du flux de la camera
Lyl feasSNI f QAlyrbbatS S
aSGUNB t 22dz2NJ WRSa&«

Evénement
ouvrir comRobot
Donnée;

Statue com robot
Donnée:

robot démarré

Evénement
connexion établie

Donnée:
robot démarré

Ouvrir camera
Fermer camera

Evénement
Afficher image
Donnée:

W/ I YSNI 2

Evenement
start recherche aréne

Evénement

start rechercheobot
Donnée:

Yl YSNI 2 dz

Donnée:
robot démarré

Ordre

Données
Outputstream

Donnée;
Message Poster

Evénement
Afficher image
Donnée:

W/ I YSNI

Donnée:
Message Poster

Donnée:
Message Poster
afficher arene

Donnée:
Dessin robot



[.2 Architecture fonctionnelle statique

Vous trouverezci-d e s s o U s
®changes entre | es fonctions d®crites

9 Une fleche pleine indigue un flux de données ou une simple variable globale :

\

1 Une fleche en pointillé indiqgue un mécanismed 6 act i:vati on

9 Une fleche pleine large indique une périodicité :

Y

un di agramme doéarchl beasembl| Bode

pr ®c ®d e mme

Démarrer serveur

Fonction : démarrer serveur démarrerserveur

lancer serveur
si échec afficher un message et stopper le programme

Connexion moniteur

Serveur
démarré

Ouvrir
——

socket -~ ] i
Etablir connexion avec

moniteur

Fonction : Etablir connexion avec moniteur

attendre ‘serveur démarré”
appeler AcceptClient et attendre ‘ouvrir socket’

Traiter message du moniteur

connexionétablie
——

— 7l
\ N start recherche

Fonction :Traiter message du moniteur
robot /
Attendre cconnexionétablied ~ T~~~ ouvrir comRobot
Tant que R e — ~
Attendre message inputStream (Read) Tralt_er lesmessagedu .
Si message = ouvrir com robot moniteur ) ¢ ouvrir camera
ouvrir comRobot ~
Si message = ouvrir camera
ouvrir camera fermer camera
Si message = fermer camera [} |m——————— -
fermer camera
Si message = start robot — __ __ __startrobot
start robot >~
Si message = cherchecae- __ __startrecherche aéne
start recherche agne $
Si message = cherciebot- L’
start rechercherobot
Mouvement
- Sinon si message = ordre de mouvement

Inputstream

J misea jour mouvement




Mettre en place la communication avec le robot

ouvrir comRobot

— T TN\

Fonction :Mettre en place la communication avec le \ N
robot

Attendre éuvrir comRobob

Mettre en place la communication avec le robot

Mettre en place la
communication avec le

Si la communication est ok
robot

Poster dnessageTomonAGK
sinon

PosterdnessageToMonNAEL
Fin du Si

statue com robot

Mettre ajour le statue de la com robot

messageTomon

Démarrer Robot

Fonction :Démarrer Robot \Ls_tﬂt Tobot
Attendre éStart robotd N\
SidStatue com robobest actif
Envoyer ordre de émarrage

mettre & jour Gobot démarr® 6 3
Fin du Si tue com robo Démarrer Robot

—_—

robot démarré

ordre

Déplacer robot

Fonction :Déplacer robot

Robot cémarré
Toute les 100ms Déplacer robot
Sidobot démarr® ést vrai

lire Gnouvementet envoyer ordre
A A mouvement
Fin du Si ordre




Envoyer message au moniteur

Fonction :Envoyer message au moniteur
Attendre éconnexionétablied
Tant que

Attendre messageToMon

Envoyer le message au supervis¢@utputstream)
Fin tant que

Lire level batterie

connexionétablie

N Démarrer Robot

messageToMo

Fonction :Lire level batterie

Toute les 500ms
Sidobot démarr® ést vrai
Demander niveau de batterie au robot
Poster pour le moniteur.
Fin du Si

Ouvrir/fermer la caméra

Fonction :Ouvrir/fermer la caméra
Attendre duvrir cameraou dermer camera®
Ouvrir ou fermer la camera
Envoyer un message au moniteur
Mettre ajour &camera ouvertd

Afficher Image

Fonction :Afficher Image

Attendre dAfficher imaged

Toute les 50ms

Sidcamera ouverbest vrai

Prendre une image du flux de la camera
Sidfficher arené= vrai alors
Dessiner agne sur image
Fin du si

Poster image pour le moniteur

Robot cémarré
Lire level batterie

Ouvrir canéra
= N
N —_—
Ouvrir/fermer la caméra
fermer canéra

—T TN

Afficher image
—— =

N

camera ouvert

afficher aene

Flicﬁirn}rg era

Afficher Image

ordre

réponse

messageToMon

Ordre dbuverture fermeture de la camera

dGcamera ouverd

messageToMon

messageToMon




Chercher Aréne

Fonction :Chercher Arene
Attendre Gstart recherche aéned
Sidcamera ouverbest vrai :
écamera ouvert = fau
Prendre une image du flux de la camera
Analyser image et dessinerdarene dessus.
La poster pour le moniteur
Attendre la Bponse du moniteur surdarene si ok
afficher arene = vrdi sinon dafficher arene = fau

Cherche Position:

-_—

Chercher Arene
start recherche

_aréne
N\

camera ouvert

Flux ddimage

camera

Fonction :Chercherposition
Attendre Gstart recherche robod
Si camera ouvefcest vrai :
Prendre une image du flux de la camera
Analyser éimage et dessiner le robot.
Mettre ajour &essin robo

—_—

Recherche de la positio
start recherche

robot

—_——

A

camera ouvert

Flux cdimage

camera

camera ouvert

afficher arene

essageToMon

messageToMon

essin robot

10




|.3Table des exigencesir chaque fonction

Vous trouverez ci-dessous une table permettant de faire la correspondance entre les fonctions
illustrées ci-dessus et les exigences.

Numéro exigence
systeme
1

2,6
3
4

7,8,9

11
12
13
14

15
16

17
18, 19

Concerne la Commentaire

fonction
Démarrer serveur

Connecter au
moniteur
Traiter message du
moniteur
Envoyer message au
moniteur
Mettre en place la
communication
avec le robot /
Démarrer Robot
NA Exigenc&kO

Déplacer robot
Lire level batterie

Ouvrir/fermer la
camera
Afficher Image

Ouvrir/fermer la
camera
Chercher Aréne

Chercher Position

11



|.4 Définition de la séquence d'exécution des fonctions

Pour il lustrer | or donnance maaessous dire svue tsiopifee s |, vV ou
Cette vue s'inspire doéuns0 ®ceosuclrainptt i wenr sUMLe H aes t
différentes séquences de taches possibles, e t | 6i mpossibilit® de r ®al

gu'afficher une image, sans avoir au préalable fait une ouverture de la caméra.

Démarrer Robot

Afficher Image || Chercher

Aréne fChercher Position
Déplacer robot Lire level batterie
Scheduleur
Temps
Nous ne pouvons expliciter " Il a fois | 6®change d

en étant exhaustifs.

12



II.  Architectures physique

Dans cette section, nous abordons l'organisation concrete de notre systéme logiciel,
basé sur Xenomai, pour le contréle et la supervision d'un robot mobile. Nous détaillons
les composants abstraits et leur mapping sur des entités physiques, tout en justifiant
nos choix architecturaux. En caractérisant les taches et leurs interfaces, nous
clarifierons les interactions entre les composants, facilitant ainsi le processus de
développement et de maintenance.

Xenomai est un IDE idéal pour une implémentation ayant des contraintes temps réel,
not amment pour r®pondre ° des probl ®mati ques
partagées et de parallélisation de processus.

Ici, les fonctions décrites précédemment seront vues sous forme de taches. Plusieurs
taches peuvent servir a réaliser une fonction.

11/ K2AE SG 2daAGATAOFIGA2Y RQdzyS 2NHFYA&l GA
des fonctions en tachegjaractérisation des taches :

Vous trouverez ci-dessous un tableau récapitulatif des taches du projet. Ces taches

permettent de réaliser les fonctions décrites précédemment. Vous trouverez dans ce
tableau une description succincte de | a to©och
mani pule en entr ®e et en sorti e activtomuavect r ouv e
son sémaphore associé et la priorité de la tache.

Bien qu'un sémaphore ne soit ni une entrée ni une sortie au sens strict, nous nous
permettons tout de méme de les inclure dans le tableau. Un sémaphore dans la
colonne "Sorties" indique qu'il peut étre rendu non bloquant par la tache.

Nous nous permettrons ®gal ement dbéajouter | e
partagées par les différents processus.

13



Nom Tasks

Init

Run

Stop

Join

th_server

th_sendTo
Mon

th_receive
FromMon

Description du

comportement
Initialisation des
structures de
I'application &
| 6ouvertu
(tAches, mutex,
sémaphores, etc.)

Démarrages des
taches a

| 6ouvertu
I'application
Fermer la
communication
avec le robot et le
moniteur
Synchronisation
des taches a

| 6ouvertu
I'application
Gestion de la
communication

du serveur avec

le moniteur.
Lancer le serveur,
Attendre que le
moniteur se
connecte.

Entrées

Lire message des Variable Globale :

taches stocker
dans une file
ddattent e
envoyer au
moniteur.

Réception de
données du
moniteur, lecture
des messages et
lancement de dé
blocage taches
en fonctions du
messages.

T DatasQueueOut

Flux :
1 Données
envoyer par le
moniteur

Sorties Activation / Priorité
Période
Sortie sur terminal : Activation au
1 Error mutex démarrage
createée
9 Error
semaphore
createée
Activation au
démarrage
Activation au
démarrage
Activation au
démarrage
Sortie sur terminal : Activation au 30
1 Start démarrage
ServerTask
i Unable to start
server on port
9 Open server on
port &N°Port
&status
1 client accepted!
Sortie sur terminal : Activation : 22
 Start
SendToMonTas Sémaphore :
k 1 sem_ser
1 wait msg to verOk
send
1 Send msgto
mon: &msg
Flux :
9 Envoie de
données au
moniteur
Sortie sur terminal : Activation : 25
! Received
message from Sémaphore :
monitor 1 sem_ser
activated verOk
1 Rcv <= &msg
Sémaphore :
1 sem_openCom
Robot

sem_startRobot
sem_camStart
sem_camStop
sem_arena

= =4 -4

14



th_openCo
mRobot

th_startRo
bot

th_move

th_battery

th_start ca
mera

th_camera

th_stop_ca
mera

Ouverture de la
communication
avec le robot

Démarrage de la
communication
avec le robot

Contréle du Variable globale :
mouvement du 1 Move
robot 1 robotStarted

Récupération de Variable globale :

['état de la M robotStarted
batterie du robot

Démarrage de la Variable globale :

caméra 1 robotStarted

Envoi e do Variable globale:

de la camera i cameraStatus
 camera

Arrét de la

caméra

Sortie sur terminal :
9 Open serial com
1 & status
Variable globale :
i DatasQueueOut

Sortie sur terminal :
i Start robot
without watchdog

1 &msgid
 Movement
answer

Variable globale :

1 Fileddéatt en
sortie

i robotStarted

Sortie sur terminal :

1 Periodic
movement
update

 Move : &Move

Flux :

i Envoie de
données au
moniteur

Sortie sur terminal :

i Start
GetBatteryTask

91 Periodic battery
updated

Variable globale :
1 DatasQueueOut

Variable globale :
i camera
 cameraStatus

Sortie sur terminal :
 ScreenCamera
1 &dimimg

Variable globale :
1 DatasQueueOut

Variable globale :
 cameraStatus
 camera

Activation : 20

Sémaphore :
T sem_op
enComR
obot

Activation :

Sémaphore :
T sem_st
artRobo
t

Période : 20
100000000

Période : 19
100000000

Activation : 28

Sémaphore :

1 sem_ca
mStart
Période : 35

100000000

Activation : 28
Sémaphore :

1 sem _ca
mStop

15



th_get_are
na

WritelnQue
ue

ReadInQue
ue

Récupération de
la postion de
l'aréne par la
cameéra

Ecrire un
message dans
une file de
messages

Lire un message
dans une file de
messages

Variable globale :
i cameraStatus
I camera

Variable globale :
1 DatasQueueOut

Sortie du terminal : Activation : 50
i Start
GetArenaTask Sémaphore :
1 Arena start 1 sem_are
search na
1 Arena updated
Variable globale :
T File doat
sortie
Sémaphore :
1 sem_camStop

Sortie du terminal :

Activation au

1 Write in queue démarrage
failed
Variable globale :
T DatasQueueOut
Return : Activation au
1 msg démarrage

16



[I.2 Allocation des fonctions aux composants

Vous trouverez ci-dessous la correspondance entre les taches et les fonctions présentées

précédemment.
Tache \ Fonction

la connexion avec

le moniteur
la communication

avec le robot
Envoyer message

Connecter au
Traiter message
du moniteur
Etablissement de
Mettre en place
Démarrer Robot
Déplacer robot
au moniteur

| Démarrer serveur
moniteur

th_server

th_sendToMon

X

th_receiveFromM X
on

th_openComRob X
ot
th_startRobot X

th_move X
th_battery

th_start camera

th_camera

th_stop_camera

th_get_arena

WritelnQueue X
ReadInQueue X

Lire level batterie

Ouvrir/fermer la

camera

Afficher Image

Chercher Aréne

17

Chercher Position



N35 A ANF YYS RQI NOKAGSOG dz2NB

Vous trouverezci-d e S S o U S

Th_get_are Th_startRo

a na bot
Moniteur Priority: 50 Priority: 20
Aperiodic Aperiodic

th_battery
Priority: 19
Periodic

un

di agramme dbéarchitecture

Mouvement supenviseur

Demandejcamera

Th_start_
mera
Priority:

Aperiod,

Th

amel

Th_server
Priority : 30
Aperiodic

(/ '\ Pour plus de lisibilité vous trouverez le digramme en page 1 du document

Graphe_chanfreau_Paris.)

Taches périodiques :

Serveur

Les taches périodiques sont celles qui nécessitent des vérifications réguliéres ou des actions
récurrentes, telles que la surveillance de la communication et la capture d'images. Elles
permettent le bon fonctionnement du systéme et sont activées a des intervalles réguliers pour
garantir la réactivité et la stabilité du systéeme.

Taches activées par événement

Les taches activées par événement réagissent aux commandes spécifiques ou aux messages
recus. Elles sont en attente active sur réception de ces événements, assurant ainsi une réponse

rapide.

18

des



[l.4Table des exigencssr chaque tache

Vous trouverez ci-dessous une table permettant de faire la correspondance entre les taches
illustrées ci-dessus et les exigences.

Numéro exigence
systeme

1

10
11
12
13

14
15

16
17

18

Concerne latache

th_server

th_server
th_receiveFromMon

th_sendToMon
th_receiveFromMon
th_server
th_openComRobot
th_openComRobot

th_openComRobot

th_startRobot
th_move
th_battery
th_start camera

th_camera

th_stop_camera
th_get _arena
Non Réalisé

Non Réalisé

Commentaire

Gestion du serveur pour le lancement et l'écoute
des connexions.

Etablissement du socket pour la communication
entre le moniteur et le superviseur.

Réception des messages envoyés par le moniteur.

Envoi des messages du superviseur aumoniteur.

Détection de la perte de communication lors de la
lecture sur le socket.

Reprise de la communication aprés détection de la
perte de communication.

Mise en place de la communication avec le robot
via le module Xbee.

Surveillance de la communication avec le robot
pour détecter toute perte de connexion.

Gestion de la perte de communication avec le
robot.

Démarrage du robot en mode simple et évolué.

Déplacement manuel du robot (avancer, reculer,
tourner a droite, tourner a gauche, stopper).
Surveillance du niveau de batterie du robot et
envoi de l'information au moniteur.

Ouverture de la caméra pour capturer les images
de l'arene.

Capture d'images (mode nominal) et envoi des
images compressées au moniteur.

Fermeture de la caméra apréscapture des images.

Calibration de I'aréne pour accélérer le traitement
de l'image et déterminer la position du robot.
Calcul de la position du robot a partir des images
capturées.

Arrét du calcul de la position du robot sur
demande de l'utilisateur.

19



[1.5Choixet justificationdes moyens de communication et de synchronisation

Donnée échangée
entre des taches
(voir diagramme
déarchitectu
statique)

Niveau de
batterie

Commandes de
mouvement

Etat du robot
(statut, position,
etc.)

Captures de la
caméra

Messages du
moniteur

Calibration de
| ar ne

Images et
position du robot

Mode de communication
(variable globale,
messageQueue,

caractérisation

(Id, nom, taille, timeout, ..)

Variable Gobale :
battery

Variable Globale :
move

Variable Globale :
robot

Queue :
msgSend

Variable Globale :
Camera

Queue :
msglmage

Queue ;
g_messageToMon

Variable Globale :
Arena

Queue :
msglmageArena

Variable Globale :
imagePosition

Protection (ou
pas) par Mutex
et Id du Mutex

Mutex
mutex_battery

Mutex
mutex_move

Mutex
mutex_robot

Mutex :
mutex_camera

Pas de mutex

Mutex

mutex_camera

Mutex
Mutex_position

Justification

Accédée par plusieurs
téches (envoi moniteur,
monitoring

Accédée par plusieurs
taches pour
coordonner les
mouvements.
Accédée par plusieurs
taches pour surveiller
et mettre a jour |'état
du robot.

Utilisation d'une file de
messages pour gérer
les captures d'images
de la caméra en évitant
les acces simultanés.

Utilisation d'une file de
messages pour
transmettre les
informations du
moniteur sans conflits
d'acces.

Protégée par Mutex
pour assurer une mise
a jour sécurisée lors de
la calibration de

| 6ar ne.
Protégée par un mutex
avoir acces a la
variable de maniére
sécurisée.

Par exemple, si le niveau de batterie est partagé en lecture ou en écriture entre plusieurs taches,
on peut choisir de le représenter par une variable globale Niveau_Batterie, protégée par un mutex
SemM_Batterie si on redoute des accés concurrents a la variable.

Aprés revue des spécifications, cette variable n'est pas utilisée de maniére concurrente et n'aurait
donc pas besoin de mutex.

20



Taches a
synchroniser

th_server

th_sendToMon

th_receiveFromM
on

th_openComRob
ot

Th_startRobot

th_move

th_battery

th_camera

th_start_camera

th_stop_camera

th_get arena

Evénement a

signaler

Message
envoyé au
moniteur

Message reca
par le moniteur

Port du robot

ouvert

Robot prét a
l ut il

Caméra
démarée

Caméra
stoppée

Début de la

calibration de

| ar n

Par exemple, sivousd e v e z

binaire,

qui

est

Sémaphore :
sem_serverOk

Sémaphore :
sem_serverOk

Sémaphore :
sem_serverOk

Sémaphore :

Sem_openComRobot

Sémaphore :
i ¢ Sem_startRobot

Pas de sémaphore

Pas de sémaphore

Pas de sémaphore

Sémaphore :
sem_camStart

Sémaphore :
sem_camsStop

Sémaphore
sem_arena
e

Id du sémaphore binaire qui
repr ®sent e

Justification

Synchronisation pour
signaler que le serveur
est opérationnel.

La tache signale un
nouveau message
envoyé au moniteur pour
traitement.

La tache signale un
nouveau message regu
au moniteur pour
traitement.
Synchronisation pour
signaler que la
communication avec le
robot est ouverte.
Synchronisation pour
signaler que le
démarrage du robot est
en cours ou terminé.
Pas de synchronisation

Pas de synchronisation
nécessaire car les
lectures de la batterie
sont gérées par une
variable globale
protégée par Mutex.
Pas de sémaphore pour
capturer les images
Synchronisation pour
signaler que la caméra
doit étre démarrée.
Synchronisation pour
signaler que la caméra
doit étre arrétée.

La tache de calibration
de 'aréne signale le
début du processus de
calibration.

synchr oni s$iehes, ous poxv@zutiliser um sémapbore
[ i b®r ® puaerautre Gahenest erdadtente.t ©c h e s

21

et

S



[1.6 Architecturephysiquestatique:

On peut doc compléter le digramme statique vue précédemment pour illustrer les mécanismes
de protection et synchronisations décrit ci-dessus. Ci-dessous | e di agramme ddbar c

physique :

Mutex_moye

mutex_camera
Th_openCo

Th_get_are Th_startRo mRobot

. na bot iority:
WlsrmitieT . pes Priority: 20
Priority: 50 Priority: 20 Aperiodic

Apetiodic Aperiodic oy era Un ey
mera Priority : 30 Serveur

Priority: N :
Aperiod, - € Aperiodic

mutex_robot

writelfQueue WelnQueue

Th_sendToM
on

th_battery
Priarity: 19

(/ '\ Pour plus de lisibilité vous trouverez le digramme en page 2 du document
Graphe_chanfreau_Paris.)

22



lI1.Codageet livraisons incrémentales

NLIS5AF IANF YYS RQFNOKAGSOGdzZNE t K& &aAal dzS

Le diagramme dobdar chit e ctructureephypiqug du sysieene a ®s
interactions entre ses composants. Voici les composants principaux basés sur la description
fournie :
1- Aréne: Terrain ou le robot évolue.
2- Robot Mobile :
- Microcontroleur
- Puce Xbee pour la communication
- Moteurs pour le déplacement
- Capteurs pour connaitre |'état du robot
3- Ordinateur Raspberry Pi 3 :
- Module Xbee pour la communication avec le robot
-Webcam pour | " acquisition visuelle de
- Systeme Xenomai pour la gestion des taches en temps réel
4- Superviseur (entité logicielle) qui contrdle et supervise le robot
- Poste de Travail Informatique :
- Interface de développement pour coder, compiler, et exécuter le programme
- Moniteur pour contréler et superviser le robot via une interface graphique

Wifi

-

Moniteur

Superviseur

23

r

it



[11.2Choix architecturaux

Utilisation du Raspberry Pi 3 :

Le Raspberry Pi 3, équipé de Xenomai, permet de gérer les taches en temps réel pour le
contrble et la supervision du robot.

Le module Xbee intégré facilite la communication sans fil avec le robot et assure une
supetrvision continue.

La connexion USB avec la webcam permetd 6 a ¢ qrap&ieniemt des images de l'aréne.

Communication sans fil (Xbee et WiFi) :

La communication Xbee entre le Raspberry Pi et le robot assure une transmission de faible

puissance.
La communication WiFi entre le Raspberry Pi et le poste de travail permet un contréle et une
supervision a distancec e q U i per met tdrogd tr el U tuisl if 4 aetxd byl e

Pour chacune des fonctions du code, nous utilisons des mutex et des sémaphores pour
assurer la synchronisation et la protection des ressources partagées.
Mutex

Lbacauxdsonn®es est prot®g® par un Mutex (RT_MUTE?:
acces simultané par deux taches concurrentes. Pour créer le mutex, on utilise la fonction
rt_mutex_create.

Pour pouvaoir lire ou écrire dans une donnée partagée, il faut utiliser le mutex. Pour cela, on
verrouille I 6acc s 7 ri mutexacquiebl|leormaveree | lae ftomrced a

A

besoindelireoumodi fi er | a donn®e, il d®vtemurex teliedsé.e | 6 ac

24



GetBatteryTask

mutex_robotStarted

Protége l'accés ala variable
robotStarted

mutex_robot

Protége l'accés au robot
pour envoyer une
commande de récupération
de la batterie

mutex_monitor

Protége I'acces au moniteur
pour envoyer la mise a jour
de la batterie

StartCamera mutex_robotStarted Protege l'accés a la variable
robotStarted
mutex_camera Protége l'accés a la caméra
pour l'initialiser et I'ouvrir
mutex_state_camera Protege l'acces a I'état de la
caméra (cameraStatus)
mutex_camera Protége l'accés a la caméra
pour capturer une image
StopCamera mutex_state_camera Protége l'accés a l'état de la
caméra (cameraStatus)
mutex_camera Protege l'acces a la caméra
pour la fermer et Ila
désallouer
GetArenaTask mutex_camera Protege l'acces a la caméra

pour capturer une image et
rechercher l'aréne

25




Sémaphore
Certains signaux sont échangés entre différentes taches, pour gérer le traitement des
données nous utilisons des sémaphores. Pour créer le sémaphore, il faut faire appel a la
fonction rt_sem_create, cette fonction initialise le sémaphore.

Pourunsémaphore,on verrouill e |l a ressource otusenom
lib re I e s®maphore. La | i b @ched quele sérpaphorm est
di sponi ble et qubelles peuvent |1 6utiliser
Lébappel 7 rtlsem ppecmetonde se mettre en atten
di sponi bl e. El'l e permet donc de se mettre

sem_barrier : Synchronise le démarrage des taches. Chaque tache attend que toutes les
autres soient prétes avant de commencer son exécution. Cela garantit que toutes les taches
démarrent simultanément aprés l'initialisation.

sem_camsStart et sem_camsStop : Pour contréler le démarrage et I'arrét de la caméra.

sem_arena : Pour synchroniser l'acces a la recherche de l'aréne.

Queue

Une file de message est implémentée est ou toutes les taches ont accés grace a laquelle
elles échangent des messages.

Pour créer une file de message, on instancie un objet (RT_QUEUE) et on utilise la fonction
rt_ queue createpour | ui all ouer de | despace m®moi
Pour écrire dans la file de message il faut utiliser la fonction WritelnQueue. Il faut indiquer
en paramétre la file d'attente ainsi que le message a envoyer.

Pour recevoir un message depuis la file de message on utilise la fonction ReadInQueue.

26

t

e
en

gue
mo



[1l.3Stratégie de codage, vérification et intégration

27

Le développement de notre robot a suivi une méthodologie afin de garantir un bon
fonctionnement et sécuritée du c ode. La strat®gie de anodingge et
entre le développement, les tests et le déploiement.
Chaque fonctionnalité du systéme a été encapsulée dans des taches distinctes afin de
garantir une bonne compréhension du code.
Voici notre démarche de codage lors de ce projet :
- Analyse du code fournit: Dans un premier temps nous avons fait une premiére
analyse du code fournit en assimilant | es | i brairies utilis®es (0Op
fonctions déja utilisé (mouvement du robot).
- Fonctions isolées : Chaque fonction du superviseur (gestion de la batterie, caméra et
aréne) a été développé en tant que module indépendant nous permettant de structurer notre
code et dobéavoir une bonne | isibilit®.
-Testd 6i nt ®.dApresteidéveloppement de chaque module, il nous a fallu vérifier
l'interaction correcte entre les composants.
Partage du travail dans | 6®qui pe
- Répartition destdches:Chaque membre de | d3®qui pe dudest v
robot. Cela nous a permis de gagner du temps sur la livraison prévuerespectant au maximum
les régles de codage.
- Communication du groupe : Grace a une bonne collaboration et des points régulier,
il nous a été possible de développer chaque tache en ayant chaque membre en accord.
Livrable
- Code source : Le code du projet est accessible depuis un dép6t GitHub avec un
document décrivant le fonctionnement de notre projet(
https://github.com/CedricChnfr/BE_INSA_Robot).
- Documentation : Dans |l es prochains jour sccessible| manue
pour comprendre comment faire fonctionner le robot et pouvoir faire profiter nos clients du
produit.



Code
Création de Taches :

Unthread (tache)s 6i nst anci e en d®cl arant une stru
globale. Cette tache créée sera passée en argument de la fonction rt_task_create (création
de la tache) et de la fonction rt_task_start (lancement de la tache). Ensuite le niveau de
priorité est donné dans le quatrieme paramétre (la priorité est une constante). Plus la variable
est grande, plus la priorité de la tache est importante.

rt_task_create(&th_battery, "th_battery"”, 6,

LatOoche est | anc®e avec rt_tadkaspap,ele¢ delixieme gparameétra
correspond a un pointeur sur la fonction a exécuter. Cette fonction permet de lier la tache et
son traitement.

rt_task_start(&th_battery, ( (*)( *)) & Tasks::GetBatteryTask,

Pour qudun thread soit activ® de fa-on

rt_task_set_periodic contenant la période.

Il faut ensuite faire appel a la fonction rt_task_wait_period. Grace a cette fonction et a une
boucle infinie, | 6ex®cution de |l a t©che v

Nous allons maintenant voir notre stratégie technique de codage de chaque fonction :
GetBatteryTask (void *arg) : Récupération du niveau de batterie du robot.
-Phase doéinitialisation dur ant etlomaatend Igued

sem_barrier soit disponible. Cela garantit une synchronisation initiale avant que les taches
ne commencent a effectuer leurs opérations.

cout << rt " €< _ PRETTY_FUNCTION__ << endl << flush;

_periodic( » TM_NOW, ledoeceeee);
_p(&sem_barrier, TM_INFINITE);

- Boucle principale :

1- La fonction acquiert le mutex mutex_robotStarted pour lire la valeur de robotStarted
de maniére slre. Si robotStarted est égal a 1, cela signifie que le robot a démarré et que la
fonction peut continuer puis libere le mutex.

2- Si le robot a démarré, la fonction acquiert le mutex mutex_robot et envoie un
message au robot pour obtenir I'état de la batterie. Elle libére ensuite le mutex mutex_robot.
3- La fonction obtient ensuite le mutex mutex_monitor et envoie le message recu du robot

au moniteur. Elle libére ensuite le mutex mutex_monitor.

sk_wait_period H
rt_mutex_acquire(&mutex_robotStarted, TM_INFINITE);
rstart = robotStarte

rt_mutex ease(&mutex_robotStarted);

cquire(&mutex_robot, TM_INFINITE);

robot . Write(new Message(MESSAGE ROBOT BATTERY GET));
ease(&mutex_robot);
rt_mutex_acquire(&mutex_monitor, TM_INFINITE);
monitor.Write(msg);

rt_mutex_release(&mutex_monitor);

~
L

a

L

28

tur e

p®rio

atte



Cette stratégie de codage est basée sur l'utilisation de mutex pour assurer la sécurité des
threads lors de l'acces aux ressources partagées (robotStarted, robot et monitor) et sur
l'utilisation de messages pour la communication entre les processus.

StartCamera (void *arg) : Démarrage de la caméra.

Cette fonction est responsable du démarrage de lacaméra. Apr s | a phasen
entre dans une boucle infinie ou on attend le sémaphore sem_camsStart. Si le robot a
démarré, on crée un nouvel objet Caméra et tente de l'ouvrir. Si la caméra s'ouvre avec
succes, elle libére le mutex mutex_camera, acquiert le mutex mutex_state_camera, définit le
statut de la caméra a 1 (cameraStatus = 1), puis libére le mutex mutex_state_camera. Si la
caméra ne s'ouvre pas, elle libere simplement le mutex mutex_camera.

if(rstart == 1
rt_mutex acquire(&mutex camera, TM INFINITE);
camera = Camera(sm, 18);

if(camera->

r
4 L
se(&mutex_camera);

rt_mutex_acquire(&mutex_state camera, TM_INFINITE);
camerastatus = 1;

rt_mutex_release(&mutex_camera);

ScreenCamera (void *arg) : Affichage de I'image de la caméra sur le moniteur.

Cette fonction est responsable de I'affichage de la vue de la caméra. On entre dans la boucle
infinie ou on attend la prochaine période. Si la caméra a démarré, elle capture une image de
la caméra et I'envoie au moniteur. Pour ce faire, elle acquiert le mutex mutex_state_camera
pour lire I'état de la caméra, puis le libére. Si la caméra est démarrée, elle regarde le mutex
mutex_camera, vérifie si la caméra est ouverte et capture une image. Ensuite, elle libére le
mutex mutex_camera et envoie l'image au moniteur.

rt_task_wait_period 2

rt_mutex_acquire(&mutex_state_camera, TM_INFINITE);

MessageImg
WriteInQueue(&q mess

I
L

rt_mutex_release(&mutex_camera);

29



StopCamera (void *arg) : Arrét de la caméra.

Cette fonction est responsable de l'arrét de la caméra. Dans la boucle infinie on attend le
sémaphore sem_camStop.

Une fois le sémaphore recu, elle acquiert le mutex mutex_state_camera pour lire I'état de la
caméra et le mettre a 0 (cameraStatus = 0), puis elle libére le mutex.

Si la caméra était en état de marche (c'est-a-dire camerastatus = 1), elle prend le mutex
mutex_camera, ferme la caméra, supprime l'objet Camera. Enfin, elle libére le mutex
mutex_camera.

m_p{&sem camStop, TM_INFINITE);

rt_mutex acquire(&mutex state camera, TM INFINITE);
cstate = cameraStatus;

camerastatus

rt_mutex release(&mutex state camera);

if(cstate == 1
rt_mutex_acquire(&mutex_camera, TM_INFINITE);

rt_mutex release(&mutex camera);

30



GetArenaTask (void *arg) : Récupération de lI'image de l'aréne par la caméra.

1T Apr s | 6i ni t iuadbowlainfiniomon elle attand Ie sémaphore sem_arena.
Ce sémaphore est donné par la tadche qui indique que l'arene doit étre recherchée dans
I'image de la caméra.

2 - Une fois le sémaphore recu, elle acquiert le mutex mutex_camera pour accéder a la
caméra de maniere sécurise.

4 - Elle capture une image de la caméra avec camera->Grab() et crée une nouvelle image
ImagewithArene avec cette image capturée. Aprés avoir capturé l'image, elle libére le mutex
mutex_camera.

5 - Elle recherche l'aréne dans I'image avec ImagewithArene->SearchArena(). Cette
fonction renvoie un objet Arena qui représente l'aréne trouvée dans l'image.

6- Elle dessine I'aréne trouvée sur I'image avec ImagewithArene->DrawArena(arenaTemp).

7 - Elle crée un nouveau message Messagelmg avec imagede | 6ar ne et
messagedans| a f i | e d dVateInQeewd(&s_nessageToMon, msgimageArena).
Cette queue est utilisée pour communiquer avec le moniteur.

8 - Elle donne le sémaphore sem_camsStop, qui est utilisé pour indiquer que la recherche de
l'aréne estterminéeet qubéon pefltviddot opper |

em_arena, INFINITE);
start << endl;
_acquire(&mute mera, TM_INFINITE);
Img *ImagewithArene = Img(camera->Grab(});
rt_mutex_release(&mute mera) ;

arenaTemp = ImagewithArene->SearchArena();
ImagewithArene->DrawArena(arenalemp);

MessageImg gImagefArena = MessageImg(MESSAGE_CAM IMAGE, ImagewithArene);

WriteInQueue(&gq_messageToMon, msglmageArena);

' << endl;

31

pl a



IV Analyse etvalidation di logicielivré par rapport aux exigences

Pour analyser et valider le logiciel livré, nous avons examiné chaque exigence définie au début
du projet et évaluer si elles ont été réalisées, voici nos remarqgues et difficultés rencontrés tout

au long du projet.

Numéro
exigence

1

Descriptionde | 6exi gence

Lancement du serveur

Etablissement du socket

Réception des messages

Envoi des messages

Détection de la perte de communication
Reprise de la communication

Mettre en place la communication avec le robot
Surveillance de la communication avec le robot
Perte de la communication avec le robot
Démarrage du robot

Déplacement manuel du robot

Niveau de batterie du robot

Ouverture de la caméra

Capture dbéune i mage ( moc

Fermeture de la caméra

Cal i bration de | 6ar ne

Calcul de la position du robot

Stopper le calcul de la position du robot

Etat
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Réalisé
Reéalisé
Reéalisé
Réalisé
Reéalisé
Réalisé
Non Réalisé

Non Réalisé

Tout a été réalisé avec succes, ce qui nous a permis de prendre en main le codage avec des
mutex et sémaphores en C++. Toutes les exigences, a partir ddancement du serveur jusqu'au
déplacement manuel du robot, ont été réalisées par nos collégues. Nous avons repris le code

pour continuer le projet et avons implémenté les fonctionnalités restantes, sauf les deux

derniéres par manque de temps. Cependant, nais prévoyons de compléter ces fonctionnalités
dans la prochaine version de notre code.

32



V.

Commentaires

Ce projet nous a permis de nous familiariser avec I'utilisation des mutex et des sémaphores en
C++, des outils indispensables pour garantir la synchronisation et la gestion des ressources
partagées dans un environnement concurrent. Les défis rencontrés et surmontés nous ont
permis de renforcer nos compétences en développement logiciel et en gestion de projets.

Nous avons réussi aimplémenter et valider la majorité des exigences fonctionnelles du projet :

1. Lancement du serveur et communication avec le moniteur : Les bases de la

communication entre le superviseur et le moniteur ont été établies avec succés. Ainsi
gue les fonctionnalités liées a I'établissement du socket, a la réception et a I'envoi des
messages, ainsi qu'a la gestion des interruptions de communication.

Communication avec le robot : La mise en place et la surveillance de la
communication avec le robot via Xbee ont été réalisées. Cela a permis de garantir une
interaction fiable entre le superviseur et le robot pour la transmission des commandes
et la réception des états.

Gestion des fonctionnalités du robot : Nous avons implémenté les fonctionnalités
essentielles, telles que le démarrage du robot, le déplacement manuel, et la
surveillance du niveau de la batterie. Cela a permis de contrdler le robot de maniére
efficace et de surveiller son état en temps réel.

Gestion de la caméra et traitement d'images : La gestion de la caméra, incluant
l'ouverture, la capture d'images, la fermeture, et la calibration de I'aréne, a été réalisée
avec succes. Ces fonctionnalités permettent une surveillance visuelle de I'aréne et
facilitent I'analyse de la position du robot.

Lors de ce projet quelques difficultés ont été rencontrées :

Temps limité: Cer t ai n e sontgasipyéirarréabisé enmaéson du temps
limité.

Perte de temps : Nous avons perdu du temps a cause de la défaillance de la carte
électronique, ce qui a retardé notre progression.

Intégration de problémes : La synchronisation des différents composants du systeme
a été un défi car a nécessité des efforts supplémentaires pour assurer une intégration
continue.

Débogage : L'identification et la correction des bugs logiciels ont été des étapes nous
ayant permis de résoudre des problémes majeurs, ils ont été essentielles pour garantir
le bon fonctionnement de notre projet.

En conclusion, ce projet a été un succes dans I'ensemble, malgré les défis et les problémes
rencontrés. Nous finaliseront les fonctionnalités restantes dans les prochainesversions du code
et nous sommes satisfaits de la progression et des réalisations accomplies.

33



