
1

Rapport de projet temps réel 4AE

Nom du binôme : Chanfreau Cédric / Paris Simon

Enseignant de TP : Monsieur Lasguines

2

Abstract :

This report presents the design and implementation of a real-time embedded system
for a robotic platform. The primary objective is to achieve seamless synchronization
and communication between various tasks, including battery monitoring, movement
commands, robot status updates, image capture, and arena calibration. We employ
global variables protected by mutexes and binary semaphores to ensure data integrity
and task synchronization. Key components include a battery monitoring task,
movement command task, camera capture task, and arena calibration task, each
synchronized using appropriately named semaphores. The system architecture, both
logical and physical, is detailed, illustrating the integration of these tasks and the
mechanisms for efficient inter-task communication. The implementation ensures
robust and real-time performance, crucial for the intended applications of the robotic
platform.

3

Table des matières
Introduction .. 4

I. Architecture fonctionnelle .. 5

I.1 Recensement des fonctions : ... 5

I.2 Architecture fonctionnelle statique : ... 7

I.3 Table des exigences sur chaque fonction : .. 11

I.4 Définition de la séquence d'exécution des fonctions : .. 12

II. Architectures physique ... 13

LLΦм /ƘƻƛȄ Ŝǘ ƧǳǎǘƛŦƛŎŀǘƛƻƴ ŘΩǳƴŜ ƻǊƎŀƴƛǎŀǘƛƻƴ Ŝƴ Ŏƻƴǎǘƛǘǳŀƴǘǎ όŘŞŎƻǳǇŀƎŜκǊŜƎǊƻǳǇŜƳŜƴǘ ŘŜǎ

fonctions en tâches), caractérisation des tâches : .. 13

II.2 Allocation des fonctions aux composants :... 17

LLΦо 5ƛŀƎǊŀƳƳŜ ŘΩŀǊŎƘƛǘŜŎǘǳǊŜ : .. 18

II.4 Table des exigences sur chaque tâche : .. 19

II.5 Choix et justification des moyens de communication et de synchronisation : 20

II.6 Architecture physique statique : ... 22

III.Codage et livraisons incrémentales .. 23

LLLΦм 5ƛŀƎǊŀƳƳŜ ŘΩŀǊŎƘƛǘŜŎǘǳǊŜ tƘȅǎƛǉǳŜ ... 23

III.2 Choix architecturaux : .. 24

III.3 Stratégie de codage, vérification et intégration .. 27

IV Analyse et validation du logiciel livré par rapport aux exigences ... 32

V. Commentaires ... 33

4

Introduction

Le projet de conception et de développement d'un superviseur pour un robot mobile constitue

une étape essentielle dans notre parcours académique dôing®nieur d®veloppeur. Réalisé dans

le cadre du cours de 4ème année du département de Génie Électrique et Informatique de l'INSA

de Toulouse, ce projet offre l'opportunité d'appliquer les connaissances théoriques acquises

lors du cours de temps réel à une problématique concrète de l'ingénierie logicielle embarquée.

L'objectif principal de ce projet est de coder et de mettre au point un superviseur pour un robot

mobile, permettant ainsi de piloter à distance les mouvements du robot, de surveiller son état

de batterie, et de contrôler la diffusion des images capturées par une caméra.

La réalisation de ce projet se déroule en plusieurs étapes, allant de la spécification des

fonctions du superviseur à la conception de son architecture logicielle, en passant par

l'implantation du code et les phases de tests. Les travaux pratiques et dirigés permettent

d'aborder progressivement les différentes composantes du projet, offrant ainsi une approche

méthodique et structurée du processus de développement logiciel.

Ce rapport présentera en détail les différentes phases du projet, en mettant l'accent sur les

choix de conception, les difficultés rencontrées et les solutions apportées. Il sera également

l'occasion de mettre en lumière les compétences acquises lors de la réalisation de ce projet,

tant sur le plan technique que sur celui de la gestion de projet et du travail en équipe.

5

I. Architecture fonctionnelle

I.1 Recensement des fonctions :

Vous trouverez ci-dessous un recensement des fonctionnalités du projet. Les noms des

fonctions et les entrées/sorties ne sont là qu'à titre indicatif. Les fonctions décrites ci-dessous

ne repr®sentent pas lôimpl®mentation r®elle et ne peuvent donc pas °tre prises comme

référence.

Nom de la
fonction

Description du comportement Entrées Sorties

Démarrer
serveur

Lancer serveur
Si echec afficher un message et stopper le
programme sion produire serveur démarré

Evènement :
 Start

Données :
inputStream
Evènement :
Serveur démarré

Connecter au
moniteur

attendre serveur démarré
appeler AcceptClient Ŝǘ ŀǘǘŜƴŘǊŜ ΨƻǳǾǊƛǊ
ǎƻŎƪŜǘΩ
ǎƛ ƻƪ ǇǊƻŘǳƛǊŜ ΨŎƻƴƴƴŜȄƛƻƴ ŞǘŀōƭƛŜΩ

Evènement :
 Serveur démarré
Ouvrir socket

Evènement :
connnexion établie

Traiter
message du
moniteur

 !ǘǘŜƴŘǊŜ ΨŎƻƴƴŜȄƛƻƴ ŞǘŀōƭƛŜΩ
Tant que
Attendre message inputStream (Read)
 - Si message = ouvrir com robot Č ouvrir
comRobot
 - Si message = ouvrir camera Č ouvrir
camera
- Si message = fermer camera Č fermer
camera
- Si message = start robot Č start robot

- Si message = cherche arèneČ start
recherche arène

- Si message = cherche arèneČ start
recherche robot

- Sinon si message = ordre de mouvement
Č mise a jour mouvement

Evènement :
 connnexion établie

Données :
Mouvement
Evènement :
Ouvrir comRobot
Ouvrir camera
Fermer camera
Start robot
start recherche arène
start recherche robot

Etablissement
de la
connexion
avec le
moniteur

- Attendre serveur démarré
- Appeler AcceptClient et attendre ouvrir
socket
- Si oui connexion établie

Evènement :
 ouvrirSocket
 serveurDemarre

Evènement :
connexionMonitor

Mettre en
place la
communicatio
n avec le
robot

!ǘǘŜƴŘǊŜ ΨƻǳǾǊƛǊ ŎƻƳwƻōƻǘΩ
Mettre en place la communication avec le
robot

Si la communication est ok poster
ΨƳŜǎǎŀƎŜ¢ƻƳƻƴ!/YΩ ǎƛƴƻƴ
tƻǎǘŜǊ ΨƳŜǎǎŀƎŜ¢ƻaƻƴb!/Ω
Mettre a jour le statue de la com robot

Evènement :
ouvrir comRobot

Données :
statue com robot
Message Poster

6

Démarrer
Robot

!ǘǘŜƴŘǊŜ Ψ{ǘŀǊǘ Ǌƻōƻǘ Ψ
{ƛ Ψ{ǘŀǘǳŜ ŎƻƳ Ǌƻōƻǘ Ψ Ŝǎǘ ŀŎǘƛŦ
Envoyer ordre de démarrage et mettre a
ƧƻǳǊ ΨǊƻōƻǘ ŘŞƳŀǊǊŞΩ

Evènement :
ouvrir comRobot
Donnée :
Statue com robot

Donnée :
robot démarré

Déplacer
robot

Toute les 100ms
{ƛ ΨǊƻōƻǘ ŘŞƳŀǊǊŞΩ Ŝǎǘ ǾǊŀƛ
ƭƛǊŜ ΨƳƻǳǾŜƳŜƴǘΩ Ŝǘ ŜƴǾƻȅŜǊ ƻǊŘǊŜ
sinon rien

Donnée :
robot démarré

Ordre

Envoyer
message au
moniteur

!ǘǘŜƴŘǊŜ ΨŎƻƴƴŜȄƛƻƴ ŞǘŀōƭƛŜΩ
Tant que
Attendre messageToMon
Envoyer le message au superviseur
Fin tant que

Evènement :
connexion établie

Données :
Outputstream

Lire level
batterie

Toute les 500ms
{ƛ ΨǊƻōƻǘ ŘŞƳŀǊǊŞΩ Ŝǎǘ ǾǊŀƛ
Demander niveau de batterie au robot et
le poster pour le moniteur.
Sinon
Rien

Donnée :
robot démarré

Donnée :
Message Poster

Ouvrir/fermer
la camera

!ǘǘŜƴŘǊŜ ΨƻǳǾǊƛǊ ŎŀƳŜǊŀΩ ƻǳ ΨŦŜǊƳŜǊ
ŎŀƳŜǊŀΩ
Ouvrir ou fermer la camera
Envoyer un message au moniteur
aŜǘǘǊŜ ŀƧƻǳǊ ΨŎŀƳŜǊŀ ƻǳǾŜǊǘ Ω

Ouvrir camera
 Fermer camera

Evènement :
Afficher image
Donnée :
 Ψ/ŀƳŜǊŀ ƻǳǾŜǊǘΩ

Afficher Image !ǘǘŜƴŘǊŜ Ψ!ŦŦƛŎƘŜǊ ƛƳŀƎŜ Ψ
Toute les 50ms
{ƛ ΨŎŀƳŜǊŀ ƻǳǾŜǊǘΩ Ŝǎǘ ǾǊŀƛ
Prendre une image du flux de la camera
 {ƛ ΨŀŦŦƛŎƘŜǊ ŀǊŜƴŜΩ Ґ ǾǊŀƛ ŀƭƻǊǎ
 5ŜǎǎƛƴŜǊ ŀǊŝƴŜ ǎǳǊ ƭΩƛƳŀƎŜ
 Fin du si
tƻǎǘŜǊ ƭΩƛƳŀƎŜ ǇƻǳǊ ƭŜ ƳƻƴƛǘŜǳǊ

Evènement :
Afficher image
Donnée :

 Ψ/ŀƳŜǊŀ ƻǳǾŜǊǘΩ

Donnée :
Message Poster

Chercher
Arène

!ǘǘŜƴŘǊŜ ΨǎǘŀǊǘ ǊŜŎƘŜǊŎƘŜ ŀǊŝƴŜΩ
{ƛ ΨŎŀƳŜǊŀ ƻǳǾŜǊǘΩ Ŝǎǘ ǾǊŀƛ :
ΨŎŀƳŜǊŀ ƻǳǾŜǊǘ Ґ ŦŀǳȄΩ
Prendre une image du flux de la camera
!ƴŀƭȅǎŜǊ ƭΩƛƳŀƎŜ Ŝǘ ŘŜǎǎƛƴŜǊ ƭΩŀǊŝƴŜ ŘŜǎǎǳǎΦ
La poster pour le moniteur
!ǘǘŜƴŘǊŜ ƭŀ ǊŞǇƻƴǎŜ Řǳ ƳƻƴƛǘŜǳǊ ǎǳǊ ƭΩŀǊŝƴŜ
ǎƛ ƻƪ ΨŀŦŦƛŎƘŜǊ ŀǊŜƴŜ Ґ ǾǊŀƛΩ ǎƛƴƻƴ ΨŀŦŦƛŎƘŜǊ
ŀǊŜƴŜ Ґ ŦŀǳȄΩ

Evènement :
start recherche arène

Donnée :
Message Poster
afficher arène

Chercher
Position

!ǘǘŜƴŘǊŜ ΨǎǘŀǊǘ ǊŜŎƘŜǊŎƘŜ ǊƻōƻǘΩ
{ƛ ŎŀƳŜǊŀ ƻǳǾŜǊǘΩ ΨŜǎǘ ǾǊŀƛ :
 Prendre une image du flux de la camera
 !ƴŀƭȅǎŜǊ ƭΩƛƳŀƎŜ Ŝǘ ŘŜǎǎƛƴŜǊ le robot.
 aŜǘǘǊŜ Ł ƧƻǳǊ ΨŘŜǎǎƛƴ ǊƻōƻǘΩ

Evènement :
start recherche robot
Donnée :
ΨŎŀƳŜǊŀ ƻǳǾŜǊǘΩ

Donnée :
Dessin robot

7

I.2 Architecture fonctionnelle statique :

Vous trouverez ci-dessous un diagramme dôarchitecture fonctionnelle montrant lôensemble des
®changes entre les fonctions d®crites pr®c®demment. Côest une vue structurelle (statique).

¶ Une flèche pleine indique un flux de données ou une simple variable globale :

¶ Une flèche en pointillé indique un mécanisme dôactivation :

¶ Une flèche pleine large indique une périodicité :

Démarrer serveur :

Connexion moniteur :

Traiter message du moniteur :

démarrer serveur Fonction : démarrer serveur

lancer serveur
si échec afficher un message et stopper le programme

Traiter les messages du
moniteur

Fonction : Traiter message du moniteur

Attendre óconnexion établieô
Tant que
Attendre message inputStream (Read)
 Si message = ouvrir com robot

ouvrir comRobot
 Si message = ouvrir camera

 ouvrir camera
 Si message = fermer camera

fermer camera
 Si message = start robot

 start robot
 Si message = cherche arène-

start recherche arène
 Si message = cherche robot-

start recherche robot

- Sinon si message = ordre de mouvement

mise à jour mouvement

connexion établie

ouvrir comRobot

ouvrir camera

fermer camera

start robot

start recherche arène

Mouvement

start recherche
robot

Inputstream

8

Mettre en place la communication avec le robot :

Démarrer Robot :

Déplacer robot :

Mettre en place la
communication avec le
robot

Fonction : Mettre en place la communication avec le
robot
Attendre óouvrir comRobotô
Mettre en place la communication avec le robot

Si la communication est ok
 Poster ómessageTomonACKô
sinon
 Poster ómessageToMonNACô
Fin du Si

Mettre à jour le statue de la com robot

Démarrer Robot

Fonction : Démarrer Robot
Attendre óStart robot ó
Si óStatue com robot ó est actif
Envoyer ordre de démarrage
 mettre à jour órobot démarr®ô
Fin du Si

Déplacer robot

Fonction : Déplacer robot

Toute les 100ms
Si órobot démarr®ô est vrai
 lire ómouvementô et envoyer ordre
Fin du Si

ouvrir comRobot

messageTomon

statue com robot

Start robot

ordre

robot démarré

Statue com robot

ordre

Robot démarré

mouvement

9

Envoyer message au moniteur :

Lire level batterie :

Ouvrir/fermer la caméra :

Afficher Image :

Démarrer Robot

Fonction : Envoyer message au moniteur

Attendre óconnexion établieô
Tant que
 Attendre messageToMon
 Envoyer le message au superviseur (Outputstream)
Fin tant que

Lire level batterie

Fonction : Lire level batterie

Toute les 500ms
 Si órobot démarr®ô est vrai
 Demander niveau de batterie au robot
 Poster pour le moniteur.
Fin du Si

Ouvrir/fermer la caméra

Fonction : Ouvrir/fermer la caméra
Attendre óouvrir cameraô ou ófermer cameraô
 Ouvrir ou fermer la camera
 Envoyer un message au moniteur
 Mettre ajour ócamera ouvert ô

Afficher Image

Fonction : Afficher Image
Attendre óAfficher image ó
Toute les 50ms
Si ócamera ouvertô est vrai
Prendre une image du flux de la camera
 Si óafficher areneô = vrai alors
 Dessiner arène sur lôimage
 Fin du si
Poster lôimage pour le moniteur

connexion établie

ordre
messageToMon

ordre Robot démarré

messageToMon

réponse

Ouvrir caméra

messageToMon

ócamera ouvertô

fermer caméra

Afficher image

messageToMon

camera ouvert

afficher arène

Flux dô image camera

Ordre dôouverture fermeture de la camera

10

Chercher Arène :

Chercher Position :

Chercher Arène

Fonction : Chercher Arène
Attendre óstart recherche arèneô
 Si ócamera ouvertô est vrai :
 ócamera ouvert = fauxô
 Prendre une image du flux de la camera
 Analyser lôimage et dessiner lôarène dessus.
 La poster pour le moniteur
Attendre la réponse du moniteur sur lôarène si ok
óafficher arene = vraiô sinon óafficher arene = fauxô

Recherche de la position

Fonction : Chercher position

Attendre óstart recherche robotô
Si camera ouvertô óest vrai :
 Prendre une image du flux de la camera
 Analyser lôimage et dessiner le robot.
 Mettre à jour ódessin robotô

afficher arene

camera ouvert

start recherche
 arène

camera ouvert

messageToMon

Flux dô image
camera

messageToMon

start recherche
robot

camera ouvert

dessin robot

Flux dô image
camera

11

I.3 Table des exigences sur chaque fonction :

Vous trouverez ci-dessous une table permettant de faire la correspondance entre les fonctions
illustrées ci-dessus et les exigences.

Numéro exigence
système

Concerne la
fonction

Commentaire

1 Démarrer serveur

2, 6 Connecter au
moniteur

3 Traiter message du
moniteur

4 Envoyer message au
moniteur

7, 8 , 9 Mettre en place la
communication
avec le robot /
Démarrer Robot

11 NA Exigence KO

12 Déplacer robot

13 Lire level batterie

14 Ouvrir/fermer la
camera

15 Afficher Image

16 Ouvrir/fermer la
camera

17 Chercher Arène

18, 19 Chercher Position

12

I.4 Définition de la séquence d'exécution des fonctions :

Pour illustrer lôordonnancement des t©ches, vous trouverez ci-dessous une vue simplifiée.

Cette vue s'inspire dôune description UML, le temps sô®coulant vers le bas et montrant les

différentes séquences de tâches possibles, et lôimpossibilit® de r®aliser une t©che telle

qu'afficher une image, sans avoir au préalable fait une ouverture de la caméra.

Nous ne pouvons expliciter ¨ la fois lô®change des flux et lôordonnancement des fonctions tout

en étant exhaustifs.

13

II. Architectures physique

Dans cette section, nous abordons l'organisation concrète de notre système logiciel,
basé sur Xenomai, pour le contrôle et la supervision d'un robot mobile. Nous détaillons
les composants abstraits et leur mapping sur des entités physiques, tout en justifiant
nos choix architecturaux. En caractérisant les tâches et leurs interfaces, nous
clarifierons les interactions entre les composants, facilitant ainsi le processus de
développement et de maintenance.

Xenomai est un IDE idéal pour une implémentation ayant des contraintes temps réel,
notamment pour r®pondre ¨ des probl®matiques dôacc¯s concurrent ¨ des ressources
partagées et de parallélisation de processus.

Ici, les fonctions décrites précédemment seront vues sous forme de tâches. Plusieurs
tâches peuvent servir à réaliser une fonction.

II.1 /ƘƻƛȄ Ŝǘ ƧǳǎǘƛŦƛŎŀǘƛƻƴ ŘΩǳƴŜ ƻǊƎŀƴƛǎŀǘƛƻƴ Ŝƴ Ŏƻƴǎǘƛǘǳŀƴǘǎ όŘŞŎƻǳǇŀƎŜκǊŜƎǊƻǳǇŜƳŜƴǘ
des fonctions en tâches), caractérisation des tâches :

Vous trouverez ci-dessous un tableau récapitulatif des tâches du projet. Ces tâches
permettent de réaliser les fonctions décrites précédemment. Vous trouverez dans ce
tableau une description succincte de la t©che, son nom, ainsi que les objets quôelle
manipule en entr®e et en sortie. Vous trouverez ®galement son type dôactivation avec
son sémaphore associé et la priorité de la tâche.

Bien qu'un sémaphore ne soit ni une entrée ni une sortie au sens strict, nous nous
permettons tout de même de les inclure dans le tableau. Un sémaphore dans la
colonne "Sorties" indique qu'il peut être rendu non bloquant par la tâche.

Nous nous permettrons ®galement dôajouter les fonctions essentielles qui sont
partagées par les différents processus.

14

Nom Tasks Description du
comportement

Entrées Sorties Activation /
Période

Priorité

Init Initialisation des

structures de
l'application à
lôouverture
(tâches, mutex,
sémaphores, etc.)

 Sortie sur terminal :

¶ Error mutex
createé

¶ Error
semaphore
createé

Activation au
démarrage

Run Démarrages des
tâches à
lôouverture de
l'application

 Activation au
démarrage

Stop Fermer la
communication
avec le robot et le
moniteur

 Activation au
démarrage

Join Synchronisation
des tâches à
lôouverture de
l'application

 Activation au
démarrage

th_server Gestion de la
communication
du serveur avec
le moniteur.
Lancer le serveur,
Attendre que le
moniteur se
connecte.

 Sortie sur terminal :

¶ Start
ServerTask

¶ Unable to start
server on port

¶ Open server on
port &N°Port
&status

¶ client accepted!

Activation au
démarrage

30

th_sendTo
Mon

Lire message des
taches stocker
dans une file
dôattente, et les
envoyer au
moniteur.

Variable Globale :

¶ DatasQueueOut

Sortie sur terminal :

¶ Start
SendToMonTas
k

¶ wait msg to
send

¶ Send msg to
mon: &msg

Flux :

¶ Envoie de
données au
moniteur

Activation :

Sémaphore :

¶ sem_ser
verOk

22

th_receive
FromMon

Réception de
données du
moniteur, lecture
des messages et
lancement de dé
blocage taches
en fonctions du
messages.

Flux :

¶ Données
envoyer par le
moniteur

Sortie sur terminal :

¶ Received
message from
monitor
activated

¶ Rcv <= &msg
Sémaphore :

¶ sem_openCom
Robot

¶ sem_startRobot

¶ sem_camStart

¶ sem_camStop

¶ sem_arena

Activation :

Sémaphore :

¶ sem_ser
verOk

25

15

th_openCo
mRobot

Ouverture de la
communication
avec le robot

 Sortie sur terminal :

¶ Open serial com

¶ & status
Variable globale :

¶ DatasQueueOut

Activation :

Sémaphore :

¶ sem_op
enComR
obot

20

th_startRo
bot

Démarrage de la
communication
avec le robot

 Sortie sur terminal :

¶ Start robot
without watchdog

¶ &msgid

¶ Movement
answer

Variable globale :

¶ File dôattente de
sortie

¶ robotStarted

Activation :

Sémaphore :

¶ sem_st
artRobo
t

th_move

Contrôle du
mouvement du
robot

Variable globale :

¶ Move

¶ robotStarted

Sortie sur terminal :

¶ Periodic
movement
update

¶ Move : &Move
Flux :

¶ Envoie de
données au
moniteur

Période :
100000000

20

th_battery

Récupération de
l'état de la
batterie du robot

Variable globale :

¶ robotStarted

Sortie sur terminal :

¶ Start
GetBatteryTask

¶ Periodic battery
updated

Variable globale :

¶ DatasQueueOut

Période :
100000000

19

th_start_ca
mera

Démarrage de la
caméra

Variable globale :

¶ robotStarted

Variable globale :

¶ camera

¶ cameraStatus

Activation :

Sémaphore :

¶ sem_ca
mStart

28

th_camera Envoie dôimage
de la camera

Variable globale :

¶ cameraStatus

¶ camera

Sortie sur terminal :

¶ ScreenCamera

¶ &dimImg

Variable globale :

¶ DatasQueueOut

Période :
100000000

35

th_stop_ca
mera

Arrêt de la
caméra

Variable globale :

¶ cameraStatus

¶ camera

Activation :

Sémaphore :

¶ sem_ca
mStop

28

16

th_get_are
na

Récupération de
la postion de
l'arène par la
caméra

Variable globale :

¶ cameraStatus

¶ camera

Sortie du terminal :

¶ Start
GetArenaTask

¶ Arena start
search

¶ Arena updated

Variable globale :

¶ File dôattente de
sortie

Sémaphore :

¶ sem_camStop

Activation :

Sémaphore :

¶ sem_are
na

50

WriteInQue
ue

Écrire un
message dans
une file de
messages

 Sortie du terminal :

¶ Write in queue
failed

Variable globale :

¶ DatasQueueOut

Activation au
démarrage

ReadInQue
ue

Lire un message
dans une file de
messages

Variable globale :

¶ DatasQueueOut

Return :

¶ msg

Activation au
démarrage

17

II.2 Allocation des fonctions aux composants :

Vous trouverez ci-dessous la correspondance entre les tâches et les fonctions présentées
précédemment.

Tâche \ Fonction

D
é

m
a

rr
e

r
se

rv
e

u
r

C
o

n
n

e
c
te

r
a
u

m
o

n
ite

u
r

T
ra

ite
r m

e
ss

a
g
e

d
u

 m
o

n
ite

u
r

E
ta

b
lis

se
m

e
n

t
d

e

la
 c

o
n

n
e

xi
o

n
 a

ve
c

le
 m

o
n

ite
u

r

M
e

tt
re

 e
n

 p
la

c
e

la
 c

o
m

m
u

n
ic

a
tio

n

a
ve

c
 le

 r
o

b
o

t

D
é

m
a

rr
e

r
R

o
b
o

t

D
é

p
la

c
e

r
ro

b
o

t

E
n

vo
ye

r
m

e
ss

a
g
e

a
u

 m
o

n
ite

u
r

L
ir
e

 le
ve

l b
a

tt
e

ri
e

O
u

vr
ir
/f

e
rm

e
r

la

c
a

m
e

ra

A
ff

ic
h

e
r

Im
a

g
e

C
h

e
rc

h
e

r
A

rè
n

e

C
h

e
rc

h
e

r
P

o
si

tio
n

th_server X

th_sendToMon

 X

th_receiveFromM
on

 X

th_openComRob
ot

 X

th_startRobot X

th_move

 X

th_battery

 X

th_start_camera X

th_camera X

th_stop_camera X

th_get_arena X

WriteInQueue X

ReadInQueue X

18

II.3 5ƛŀƎǊŀƳƳŜ ŘΩŀǊŎƘƛǘŜŎǘǳǊŜ :

Vous trouverez ci-dessous un diagramme dôarchitecture des t©ches.

(/ ! \ Pour plus de lisibilité vous trouverez le digramme en page 1 du document
Graphe_chanfreau_Paris.)

Tâches périodiques :
Les tâches périodiques sont celles qui nécessitent des vérifications régulières ou des actions
récurrentes, telles que la surveillance de la communication et la capture d'images. Elles
permettent le bon fonctionnement du système et sont activées à des intervalles réguliers pour
garantir la réactivité et la stabilité du système.

Tâches activées par événement :
Les tâches activées par événement réagissent aux commandes spécifiques ou aux messages
reçus. Elles sont en attente active sur réception de ces événements, assurant ainsi une réponse
rapide.

19

II.4 Table des exigences sur chaque tâche :

Vous trouverez ci-dessous une table permettant de faire la correspondance entre les tâches
illustrées ci-dessus et les exigences.

Numéro exigence
système

Concerne la tâche Commentaire

1 th_server
Gestion du serveur pour le lancement et l'écoute

des connexions.

2 th_server
Établissement du socket pour la communication

entre le moniteur et le superviseur.

3 th_receiveFromMon Réception des messages envoyés par le moniteur.

4 th_sendToMon Envoi des messages du superviseur au moniteur.

5 th_receiveFromMon
Détection de la perte de communication lors de la

lecture sur le socket.

6 th_server
Reprise de la communication après détection de la

perte de communication.

7 th_openComRobot
Mise en place de la communication avec le robot

via le module Xbee.

8 th_openComRobot
Surveillance de la communication avec le robot

pour détecter toute perte de connexion.

9 th_openComRobot
Gestion de la perte de communication avec le

robot.

10 th_startRobot Démarrage du robot en mode simple et évolué.

11 th_move
Déplacement manuel du robot (avancer, reculer,

tourner à droite, tourner à gauche, stopper).

12 th_battery
Surveillance du niveau de batterie du robot et

envoi de l'information au moniteur.

13 th_start_camera
Ouverture de la caméra pour capturer les images

de l'arène.

14 th_camera
Capture d'images (mode nominal) et envoi des

images compressées au moniteur.

15 th_stop_camera Fermeture de la caméra après capture des images.

16 th_get_arena
Calibration de l'arène pour accélérer le traitement

de l'image et déterminer la position du robot.

17 Non Réalisé
Calcul de la position du robot à partir des images

capturées.

18 Non Réalisé
Arrêt du calcul de la position du robot sur

demande de l'utilisateur.

20

II.5 Choix et justification des moyens de communication et de synchronisation :

Donnée échangée
entre des tâches
 (voir diagramme
dôarchitecture logique
statique)

Mode de communication
(variable globale,
messageQueue, é) et
caractérisation
(Id, nom, taille, timeout, ..)

Protection (ou
pas) par Mutex
et Id du Mutex

Justification

Niveau de

batterie

Variable Gobale :
battery

Mutex
mutex_battery

Accédée par plusieurs
tâches (envoi moniteur,
monitoring batterieé)

Commandes de

mouvement

Variable Globale :
move

Mutex
mutex_move

Accédée par plusieurs
tâches pour
coordonner les
mouvements.

État du robot

(statut, position,

etc.)

Variable Globale :
robot
Queue :
msgSend

Mutex
mutex_robot

Accédée par plusieurs
tâches pour surveiller
et mettre à jour l'état
du robot.

Captures de la

caméra

Variable Globale :
Camera
Queue :
msgImage

Mutex :
mutex_camera

Utilisation d'une file de
messages pour gérer
les captures d'images
de la caméra en évitant
les accès simultanés.

Messages du

moniteur

Queue ;
q_messageToMon

Pas de mutex
Utilisation d'une file de
messages pour
transmettre les
informations du
moniteur sans conflits
d'accès.

Calibration de

lõar¯ne

Variable Globale :
Arena
Queue :
msgImageArena

Mutex
mutex_camera

Protégée par Mutex
pour assurer une mise
à jour sécurisée lors de
la calibration de
lôar¯ne.

Images et

position du robot

Variable Globale :
imagePosition

Mutex
Mutex_position

Protégée par un mutex
avoir accès à la
variable de manière
sécurisée.

Par exemple, si le niveau de batterie est partagé en lecture ou en écriture entre plusieurs tâches,

on peut choisir de le représenter par une variable globale Niveau_Batterie, protégée par un mutex

SemM_Batterie si on redoute des accès concurrents à la variable.

Après revue des spécifications, cette variable n'est pas utilisée de manière concurrente et n'aurait
donc pas besoin de mutex.

21

Tâches à
synchroniser

Événement à
signaler

Id du sémaphore binaire qui
repr®sente lô®v®nement

Justification

th_server Sémaphore :
sem_serverOk

Synchronisation pour
signaler que le serveur
est opérationnel.

th_sendToMon

Message
envoyé au
moniteur

Sémaphore :
sem_serverOk

La tâche signale un
nouveau message
envoyé au moniteur pour
traitement.

th_receiveFromM

on

Message reça
par le moniteur

Sémaphore :
sem_serverOk

La tâche signale un
nouveau message reçu
au moniteur pour
traitement.

th_openComRob

ot

Port du robot
ouvert

Sémaphore :
Sem_openComRobot

Synchronisation pour
signaler que la
communication avec le
robot est ouverte.

Th_startRobot Robot prêt à
lôutilisation

Sémaphore :
Sem_startRobot

Synchronisation pour
signaler que le
démarrage du robot est
en cours ou terminé.

th_move

 Pas de sémaphore Pas de synchronisation

th_battery

 Pas de sémaphore Pas de synchronisation
nécessaire car les
lectures de la batterie
sont gérées par une
variable globale
protégée par Mutex.

th_camera Pas de sémaphore Pas de sémaphore pour
capturer les images

th_start_camera Caméra
démarée

Sémaphore :
sem_camStart

Synchronisation pour
signaler que la caméra
doit être démarrée.

th_stop_camera Caméra
stoppée

Sémaphore :
sem_camStop

Synchronisation pour
signaler que la caméra
doit être arrêtée.

th_get_arena Début de la
calibration de
lôar¯ne

Sémaphore
sem_arena

La tâche de calibration
de l'arène signale le
début du processus de
calibration.

Par exemple, si vous devez synchroniser lôex®cution de tâches, vous pouvez utiliser un sémaphore

binaire, qui est lib®r® par lôune des t©ches et sur lequel une autre tâche est en attente.

22

II.6 Architecture physique statique :

On peut doc compléter le digramme statique vue précédemment pour illustrer les mécanismes
de protection et synchronisations décrit ci-dessus. Ci-dessous le diagramme dôarchitecture
physique :

(/ ! \ Pour plus de lisibilité vous trouverez le digramme en page 2 du document
Graphe_chanfreau_Paris.)

23

III.Codage et livraisons incrémentales

III.1 5ƛŀƎǊŀƳƳŜ ŘΩŀǊŎƘƛǘŜŎǘǳǊŜ tƘȅǎƛǉǳŜ

Le diagramme dôarchitecture physique d®crit la structure physique du système et les

interactions entre ses composants. Voici les composants principaux basés sur la description

fournie :

1- Arène : Terrain où le robot évolue.

2- Robot Mobile :

- Microcontrôleur

- Puce Xbee pour la communication

- Moteurs pour le déplacement

- Capteurs pour connaître l'état du robot

3- Ordinateur Raspberry Pi 3 :

- Module Xbee pour la communication avec le robot

- Webcam pour l'acquisition visuelle de lôar¯ne

- Système Xenomai pour la gestion des tâches en temps réel

4- Superviseur (entité logicielle) qui contrôle et supervise le robot

- Poste de Travail Informatique :

- Interface de développement pour coder, compiler, et exécuter le programme

- Moniteur pour contrôler et superviser le robot via une interface graphique

24

III.2 Choix architecturaux :

Utilisation du Raspberry Pi 3 :

Le Raspberry Pi 3, équipé de Xenomai, permet de gérer les tâches en temps réel pour le

contrôle et la supervision du robot.

Le module Xbee intégré facilite la communication sans fil avec le robot et assure une

supervision continue.

La connexion USB avec la webcam permet dôacqu®rir rapidement des images de l'arène.

Communication sans fil (Xbee et WiFi) :

La communication Xbee entre le Raspberry Pi et le robot assure une transmission de faible

puissance.

La communication WiFi entre le Raspberry Pi et le poste de travail permet un contrôle et une

supervision à distance ce qui permettra ¨ lôutilisateur dô°tre plus flexible.

Pour chacune des fonctions du code, nous utilisons des mutex et des sémaphores pour

assurer la synchronisation et la protection des ressources partagées.

Mutex

Lôacc¯s aux donn®es est prot®g® par un Mutex (RT_MUTEX) sous Xenomai, afin dô®viter un

accès simultané par deux tâches concurrentes. Pour créer le mutex, on utilise la fonction

rt_mutex_create.

Pour pouvoir lire ou écrire dans une donnée partagée, il faut utiliser le mutex. Pour cela, on

verrouille lôacc¯s ¨ la variable avec la fonction rt_mutex_acquire. Lorsque le thread nôa plus

besoin de lire ou modifier la donn®e, il d®verrouille lôacc¯s avec la fonction rt_mutex_release.

25

GetBatteryTask mutex_robotStarted Protège l'accès à la variable

robotStarted

mutex_robot Protège l'accès au robot

pour envoyer une

commande de récupération

de la batterie

mutex_monitor Protège l'accès au moniteur

pour envoyer la mise à jour

de la batterie

StartCamera mutex_robotStarted Protège l'accès à la variable

robotStarted

mutex_camera Protège l'accès à la caméra

pour l'initialiser et l'ouvrir

mutex_state_camera Protège l'accès à l'état de la

caméra (cameraStatus)

mutex_camera Protège l'accès à la caméra

pour capturer une image

StopCamera mutex_state_camera Protège l'accès à l'état de la

caméra (cameraStatus)

mutex_camera Protège l'accès à la caméra

pour la fermer et la

désallouer

GetArenaTask

mutex_camera Protège l'accès à la caméra

pour capturer une image et

rechercher l'arène

26

Sémaphore

Certains signaux sont échangés entre différentes tâches, pour gérer le traitement des

données nous utilisons des sémaphores. Pour créer le sémaphore, il faut faire appel à la

fonction rt_sem_create, cette fonction initialise le sémaphore.

Pour un sémaphore, on verrouille la ressource ou on la lib¯re. Lôappel ¨ la fonction rt_sem_v

lib¯re le s®maphore. La lib®ration permet dôavertir les autres tâches que le sémaphore est

disponible et quôelles peuvent lôutiliser.

Lôappel ¨ la fonction rt_sem_p permet de se mettre en attente que lôacc¯s au s®maphore soit

disponible. Elle permet donc de se mettre en mode r®ception dôun ®v¯nement.

sem_barrier : Synchronise le démarrage des tâches. Chaque tâche attend que toutes les

autres soient prêtes avant de commencer son exécution. Cela garantit que toutes les tâches

démarrent simultanément après l'initialisation.

sem_camStart et sem_camStop : Pour contrôler le démarrage et l'arrêt de la caméra.

sem_arena : Pour synchroniser l'accès à la recherche de l'arène.

Queue

Une file de message est implémentée est où toutes les tâches ont accès grâce à laquelle

elles échangent des messages.

Pour créer une file de message, on instancie un objet (RT_QUEUE) et on utilise la fonction

rt_queue_create pour lui allouer de lôespace m®moire.

Pour écrire dans la file de message il faut utiliser la fonction WriteInQueue. Il faut indiquer

en paramètre la file d'attente ainsi que le message à envoyer.

Pour recevoir un message depuis la file de message on utilise la fonction ReadInQueue.

27

III.3 Stratégie de codage, vérification et intégration

Le développement de notre robot a suivi une méthodologie afin de garantir un bon

fonctionnement et sécurité du code. La strat®gie de codage et dôint®gration assure un lien

entre le développement, les tests et le déploiement.

Chaque fonctionnalité du système a été encapsulée dans des tâches distinctes afin de

garantir une bonne compréhension du code.

Voici notre démarche de codage lors de ce projet :

 - Analyse du code fournit : Dans un premier temps nous avons fait une première

analyse du code fournit en assimilant les librairies utilis®es (OpenCVé) ainsi que les

fonctions déjà utilisé (mouvement du robot).

 - Fonctions isolées : Chaque fonction du superviseur (gestion de la batterie, caméra et

arène) a été développé en tant que module indépendant nous permettant de structurer notre

code et dôavoir une bonne lisibilit®.

 - Test dôint®gration : Après le développement de chaque module, il nous a fallu vérifier

l'interaction correcte entre les composants.

Partage du travail dans lõ®quipe

 - Répartition des tâches : Chaque membre de lõ®quipe cõest vu assigner une fonction du

robot. Cela nous a permis de gagner du temps sur la livraison prévue. respectant au maximum

les règles de codage.

- Communication du groupe : Grâce à une bonne collaboration et des points régulier,

il nous a été possible de développer chaque tâche en ayant chaque membre en accord.

Livrable

 - Code source : Le code du projet est accessible depuis un dépôt GitHub avec un

document décrivant le fonctionnement de notre projet(

https://github.com/CedricChnfr/BE_INSA_Robot).

 - Documentation : Dans les prochains jours, un manuel dôutilisation sera accessible

pour comprendre comment faire fonctionner le robot et pouvoir faire profiter nos clients du

produit.

28

Code

Création de Tâches :

Un thread (tâche) sôinstancie en d®clarant une structure RT_TASK d®clar®e comme variable

globale. Cette tâche créée sera passée en argument de la fonction rt_task_create (création

de la tâche) et de la fonction rt_task_start (lancement de la tâche). Ensuite le niveau de

priorité est donné dans le quatrième paramètre (la priorité est une constante). Plus la variable

est grande, plus la priorité de la tâche est importante.

La t©che est lanc®e avec lôappel ¨ la fonction rt_task_start, le deuxième paramètre

correspond à un pointeur sur la fonction à exécuter. Cette fonction permet de lier la tâche et

son traitement.

Pour quôun thread soit activ® de fa­on p®riodique il faut faire appel ¨ la fonction

rt_task_set_periodic contenant la période.

Il faut ensuite faire appel à la fonction rt_task_wait_period. Grâce à cette fonction et à une

boucle infinie, lôex®cution de la t©che va attendre le prochain cycle pour se faire.

Nous allons maintenant voir notre stratégie technique de codage de chaque fonction :

GetBatteryTask (void *arg) : Récupération du niveau de batterie du robot.

- Phase dôinitialisation durant laquelle on initialise la p®riodicit® et on attend que

sem_barrier soit disponible. Cela garantit une synchronisation initiale avant que les tâches

ne commencent à effectuer leurs opérations.

 - Boucle principale :

 1- La fonction acquiert le mutex mutex_robotStarted pour lire la valeur de robotStarted

de manière sûre. Si robotStarted est égal à 1, cela signifie que le robot a démarré et que la

fonction peut continuer puis libère le mutex.

2- Si le robot a démarré, la fonction acquiert le mutex mutex_robot et envoie un

message au robot pour obtenir l'état de la batterie. Elle libère ensuite le mutex mutex_robot.

3- La fonction obtient ensuite le mutex mutex_monitor et envoie le message reçu du robot

au moniteur. Elle libère ensuite le mutex mutex_monitor.

29

Cette stratégie de codage est basée sur l'utilisation de mutex pour assurer la sécurité des

threads lors de l'accès aux ressources partagées (robotStarted, robot et monitor) et sur

l'utilisation de messages pour la communication entre les processus.

StartCamera (void *arg) : Démarrage de la caméra.

Cette fonction est responsable du démarrage de la caméra. Apr¯s la phase dôinitialisation, on

entre dans une boucle infinie où on attend le sémaphore sem_camStart. Si le robot a

démarré, on crée un nouvel objet Caméra et tente de l'ouvrir. Si la caméra s'ouvre avec

succès, elle libère le mutex mutex_camera, acquiert le mutex mutex_state_camera, définit le

statut de la caméra à 1 (cameraStatus = 1), puis libère le mutex mutex_state_camera. Si la

caméra ne s'ouvre pas, elle libère simplement le mutex mutex_camera.

ScreenCamera (void *arg) : Affichage de l'image de la caméra sur le moniteur.

Cette fonction est responsable de l'affichage de la vue de la caméra. On entre dans la boucle

infinie où on attend la prochaine période. Si la caméra a démarré, elle capture une image de

la caméra et l'envoie au moniteur. Pour ce faire, elle acquiert le mutex mutex_state_camera

pour lire l'état de la caméra, puis le libère. Si la caméra est démarrée, elle regarde le mutex

mutex_camera, vérifie si la caméra est ouverte et capture une image. Ensuite, elle libère le

mutex mutex_camera et envoie l'image au moniteur.

30

StopCamera (void *arg) : Arrêt de la caméra.

Cette fonction est responsable de l'arrêt de la caméra. Dans la boucle infinie on attend le

sémaphore sem_camStop.

Une fois le sémaphore reçu, elle acquiert le mutex mutex_state_camera pour lire l'état de la

caméra et le mettre à 0 (cameraStatus = 0), puis elle libère le mutex.

Si la caméra était en état de marche (c'est-à-dire camerastatus = 1), elle prend le mutex

mutex_camera, ferme la caméra, supprime l'objet Camera. Enfin, elle libère le mutex

mutex_camera.

31

GetArenaTask (void *arg) : Récupération de l'image de l'arène par la caméra.

1 ï Apr¯s lôinitialisation, dans la une boucle infinie où elle attend le sémaphore sem_arena.

Ce sémaphore est donné par la tâche qui indique que l'arène doit être recherchée dans

l'image de la caméra.

2 - Une fois le sémaphore reçu, elle acquiert le mutex mutex_camera pour accéder à la

caméra de manière sécurisé.

4 - Elle capture une image de la caméra avec camera->Grab() et crée une nouvelle image

ImagewithArene avec cette image capturée. Après avoir capturé l'image, elle libère le mutex

mutex_camera.

5 - Elle recherche l'arène dans l'image avec ImagewithArene->SearchArena(). Cette

fonction renvoie un objet Arena qui représente l'arène trouvée dans l'image.

6- Elle dessine l'arène trouvée sur l'image avec ImagewithArene->DrawArena(arenaTemp).

7 - Elle crée un nouveau message MessageImg avec l'image de lôar¯ne et on place le

message dans la file dôattente avec WriteInQueue(&q_messageToMon, msgImageArena).

Cette queue est utilisée pour communiquer avec le moniteur.

8 - Elle donne le sémaphore sem_camStop, qui est utilisé pour indiquer que la recherche de

l'arène est terminée et quôon peut stopper le flux vidéo.

32

IV Analyse et validation du logiciel livré par rapport aux exigences

Pour analyser et valider le logiciel livré, nous avons examiné chaque exigence définie au début

du projet et évaluer si elles ont été réalisées, voici nos remarques et difficultés rencontrés tout

au long du projet.

Numéro
exigence

Description de lôexigence État

1 Lancement du serveur Réalisé

2 Établissement du socket Réalisé

3 Réception des messages Réalisé

4 Envoi des messages Réalisé

5 Détection de la perte de communication Réalisé

6 Reprise de la communication Réalisé

7 Mettre en place la communication avec le robot Réalisé

8 Surveillance de la communication avec le robot Réalisé

9 Perte de la communication avec le robot Réalisé

10 Démarrage du robot Réalisé

11 Déplacement manuel du robot Réalisé

12 Niveau de batterie du robot Réalisé

13 Ouverture de la caméra Réalisé

14 Capture dôune image (mode nominal) Réalisé

15 Fermeture de la caméra Réalisé

16 Calibration de lôar¯ne Réalisé

17 Calcul de la position du robot Non Réalisé

18 Stopper le calcul de la position du robot Non Réalisé

Tout a été réalisé avec succès, ce qui nous a permis de prendre en main le codage avec des

mutex et sémaphores en C++. Toutes les exigences, à partir du lancement du serveur jusqu'au

déplacement manuel du robot, ont été réalisées par nos collègues. Nous avons repris le code

pour continuer le projet et avons implémenté les fonctionnalités restantes, sauf les deux

dernières par manque de temps. Cependant, nous prévoyons de compléter ces fonctionnalités

dans la prochaine version de notre code.

33

V. Commentaires

Ce projet nous a permis de nous familiariser avec l'utilisation des mutex et des sémaphores en

C++, des outils indispensables pour garantir la synchronisation et la gestion des ressources

partagées dans un environnement concurrent. Les défis rencontrés et surmontés nous ont

permis de renforcer nos compétences en développement logiciel et en gestion de projets.

Nous avons réussi à implémenter et valider la majorité des exigences fonctionnelles du projet :

1. Lancement du serveur et communication avec le moniteur : Les bases de la

communication entre le superviseur et le moniteur ont été établies avec succès. Ainsi

que les fonctionnalités liées à l'établissement du socket, à la réception et à l'envoi des

messages, ainsi qu'à la gestion des interruptions de communication.

2. Communication avec le robot : La mise en place et la surveillance de la

communication avec le robot via Xbee ont été réalisées. Cela a permis de garantir une

interaction fiable entre le superviseur et le robot pour la transmission des commandes

et la réception des états.

3. Gestion des fonctionnalités du robot : Nous avons implémenté les fonctionnalités

essentielles, telles que le démarrage du robot, le déplacement manuel, et la

surveillance du niveau de la batterie. Cela a permis de contrôler le robot de manière

efficace et de surveiller son état en temps réel.

4. Gestion de la caméra et traitement d'images : La gestion de la caméra, incluant

l'ouverture, la capture d'images, la fermeture, et la calibration de l'arène, a été réalisée

avec succès. Ces fonctionnalités permettent une surveillance visuelle de l'arène et

facilitent l'analyse de la position du robot.

Lors de ce projet quelques difficultés ont été rencontrées :

1. Temps limité : Certaines exigences nôont pas pu être réalisé en raison du temps

limité.

2. Perte de temps : Nous avons perdu du temps à cause de la défaillance de la carte

électronique, ce qui a retardé notre progression.

3. Intégration de problèmes : La synchronisation des différents composants du système

a été un défi car a nécessité des efforts supplémentaires pour assurer une intégration

continue.

4. Débogage : L'identification et la correction des bugs logiciels ont été des étapes nous

ayant permis de résoudre des problèmes majeurs, ils ont été essentielles pour garantir

le bon fonctionnement de notre projet.

En conclusion, ce projet a été un succès dans l'ensemble, malgré les défis et les problèmes

rencontrés. Nous finaliseront les fonctionnalités restantes dans les prochaines versions du code

et nous sommes satisfaits de la progression et des réalisations accomplies.

