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INTRODUCTION 

 

Notre projet est de concevoir un microprocesseur de type RISC, désigné en 

VHDL sur l’outil de développement, de simulation et d’implémentation Vivado. 

Cette architecture promet une exécution plus rapide des programmes grâce a ses 

5 niveaux de pipeline. Ce rapport sera structuré de manière à couvrir les diffé-

rentes phases du projet. 

 

 Nous commencerons par présenter l’architecture du microprocesseur avec les dif-

férents composants clés tels que l'Unité Arithmétique et Logique (ALU), le Banc de 

Registres, la Mémoire d'Instructions, la Mémoire de Données, et d'autres éléments 

essentiels qui guideront la conception de notre microprocesseur. Nous aborderons 

également la gestion des aléas, un aspect crucial de la conception. 

  

Enfin, nous analyserons les résultats de synthèse soulignant les optimisations réa-

lisées pour augmenter la fréquence de fonctionnement ainsi que la diminution de 

sa consommation énergétique.   

 

Note : 

Le présent rapport n’a pas vocation à être imprimé, il serait illisible. Nous conseillons donc sa 

lecture au format PDF. Les captures d’écrans étant qualitatives, il est possible zoomer dessus pour 

analyser leur contenu (notamment les chronogrammes). Nous conseillions également de lire en 

priorité la partie I.5.4 avant la partie I.5.3, cela évitera toute confusion. 
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I) L’ARCHITECTURE DU MICROPROCESSEUR RISC   

 

Dans cette partie nous nous pencherons sur l’architecture d’un microproces-

seur RISC, nous ne rentrerons cependant pas dans les détails. En effet il existe 

beaucoup de documentation à ce sujet, qui sont claires et synthétiques, elles n’ont 

pas besoin de copie (qui elle serait approximative). Nous présenterons donc de 

manière fonctionnelle les 5 éléments présents dans notre microprocesseur l’ALU, 

la mémoire données, la mémoire d’instruction et le banc de registres.  

 

 I.1) UNITE ARITHMETIQUE ET LOGIQUE  

 

 I.1.1) DESCRIPTIONS FONCTIONNELLES 

L'Unité Arithmétique et Logique (ALU) est le composant central permettant 

l'exécution des opérations arithmétiques et logiques du microprocesseur.  Le 

schéma fonctionnel de l'ALU est donné ci-dessous en figure 1. Le Bus de contrôle 

(Ctrl_ALU) détermine le type d'opération à effectuer. L’ALU prend deux entrées A 

et B de 8 bits, qui seront les opérandes et S le résultat de l’opération également sur 

8 bits. Nous avons également en sortie 4 flags, Negatif, Carry, Zero et Overflow.  

 

Figure 1 Schéma fonctionnel d’un ALU 
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 I.1.2) SIMULATION FONCTIONNELLE  

  

 Vous trouverez ci-dessous en Figure 2 l’une des simulations fonctionnelles de 

notre ALU. Cette simulation ne dépendant pas du temps et de l’implémentation elle 

nous permet uniquement de vérifier le fonctionnement logique du circuit.  

  

 

Figure 2 Simulation fonctionnelle ALU 

 Ci-dessous vous trouverez le tableau N°1 permettant de faire le lien entre bus de 

contrôle et les opérations arithmétiques et logiques réalisées.  

Tableau 1 OPCODE ALU 

Addition  Ope="000"  S = A + B  

Soustraction  Ope="001”  S = A - B  

Multiplication  Ope="010"  S = A x B  

ET logique  Ope="011"  S = A AND B  

OU logique  Ope="100"  S = A OR B  

NOT logique  Ope="101"  S = NOT A  

  

Le résultat de chaque opération est stocké dans la sortie S. De plus, le composant 

génère des informations sur le résultat sous forme de drapeaux dans la sortie Flag, 

indiquant si une opération a généré une retenue, si le résultat est négatif, s'il est 

égal à zéro, ou s'il y a eu un dépassement.  
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I.2) BANC DE REGISTRES  

I.2.1) DESCRIPTIONS FONCTIONNELLE  

 

Le Banc de Registres, intégré dans notre architecture, représente un élément fon-

damental pour le stockage temporaire des données pendant l'exécution des ins-

tructions. Il est constitué de 16 registres de 8 bits, offrant une capacité de stockage 

significative pour les opérations en cours. Cette configuration permet d'effectuer 

simultanément des opérations d'accès en lecture via les ports QA et QB, ainsi que 

des opérations d'écriture via le port W_in. 

 

 

Figure 3 Schéma fonctionnel Banc de registres 

  
 

I.2.2) SIMULATION FONCTIONNELLE  

 

Une simulation a été effectuée pour évaluer la lecture, l'écriture et le comportement 

général du banc de registres. Les valeurs ont été manipulées pour garantir une 

gestion appropriée des données en fonction de l’horloge. Cela inclut des scénarios 

tels que la lecture et l’écriture simultanée sur une sortie (bypass), ou encore la lec-

ture simple dans un registre via le port d'écriture. 
 

 

Figure 4 Simulation fonctionnelle Banc de registres 

Test 1 - Sélection de l’adresse 0 sur addA et addB 

- Mode lecture de la donnée 0 

Test 2 - Sélection de l’adresse 1 sur addA  

- Ecriture de la donnée 55 sur addA (bypass*) 

Test 3  - Sélection de l’adresse 0 puis 2 sur addB 

- Ecriture de la donnée aa puis ff sur addB (sélectionné avec 

addW) 

Test 4  - Lecture de addA et addB avec la donnée précédemment 

écrite suivi par l’activation du reset 
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*Le bypass, est une technique permettant de lire et d’écrire sur un registre en 

même temps. Il est utilisé dans les processeurs pour améliorer l'efficacité en redi-

rigeant directement les résultats calculés vers les instructions suivantes qui en ont 

besoin, sans attendre l'écriture dans le registre. 

 
 

I.3) MEMOIRE DE DONNEES  

I.3.1) DESCRIPTIONS FONCTIONNELLES 

 

La mémoire de données est utilisée pour stocker des informations temporaires né-

cessaires au fonctionnement d'un programme. Les opérations sur la mémoire de 

données incluent la lecture des valeurs stockées à des adresses spécifiques et 

l'écriture de nouvelles valeurs à ces adresses.  

 

 

Figure 5 Schéma fonctionnel Mémoire de données 

@(7:0) : Adresse à laquelle les opérations de lecture ou écriture doivent être effec-

tuées. 

IN(7:0) : Entrée de données à écrire dans la mémoire à l'adresse spécifiée. 

RW : Mode d'opération de la mémoire (0 pour lecture, 1 pour écriture). 

RST : Entrée de réinitialisation de la mémoire. 

CLK : Entrée de l'horloge servant à déclencher les opérations de la mémoire. 

OUT(7:0) : Sortie renvoyant les données lues à partir de l'adresse spécifiée. 
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I.3.2) Simulation fonctionnelle  

    

 

Figure 6 Simulation fonctionnelle Mémoire de données 

 

Test 1 Ecriture de la donnée ff sur le registre 

0 

Test 2 Lecture de la donnée écrite sur le re-

gistre 0 

Test 3 Ecriture de la donnée af sur le registre 

1 

Test 4 Lecture du registre 1 puis le registre 0 

Test 5 Mise à 1 du reset 
 

À chaque front montant de l'horloge (CLK), la mémoire réagit en fonction des si-

gnaux de contrôle (RW) et de réinitialisation (RST). En cas de réinitialisation (RST à 

1), la mémoire est remise à zéro. En mode écriture (RW à 1), les données d'entrée 

(data) sont écrites à l'adresse spécifiée. En mode lecture (RW à 0), les données 

situées à l'adresse spécifiée sont renvoyées via la sortie (OUT).  
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I.4) MEMOIRE D’INSTRUCTION   

 

I.4.1) DESCRIPTIONS FONCTIONNELLE 

 

La mémoire d'instructions stocke la liste d'instructions machine qui composent le 

programme exécuté par le processeur. Chaque instruction est associée à une 

adresse mémoire spécifique. Chaque instruction est représentée sur 32 bits et est 

accessible à une adresse spécifique dans la mémoire.  

  

 

Figure 7 Schéma fonctionnel Mémoire d'instructions 

 

A [7 :0] : Entrée représentant l'adresse à laquelle les opérations de lecture doivent 

être effectuées.  

 

S [31 :0] : Sortie renvoyant l'instruction de 32 bits lue à partir de l'adresse spécifiée 

 

I.4.2) Simulation fonctionnelle  

 

 

Figure 8 Simulation fonctionnelle Mémoire d'instructions 

  

Test Ecriture de l’instruction dans le re-

gistre sélectionné par A[7:0] sur front 

montant 

 

À chaque front montant de l'horloge (clk), la mémoire réagit en renvoyant l'instruc-

tion située à l'adresse spécifiée via la sortie S.  
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I.5) GESTION DES ALEA  

 

I.5.1) GESTION DESCRIPTIONS FONCTIONNELLE DES ALEA  

On distingue les aléas de données et les aléas de branchement. Nous nous 

intéresserons aux aléas de données. Un alea de donnée est un évènement, cet 

évènement est déclenché par au moins deux instructions s’exécutant de manière 

consécutive et de manière incompatible. Une première instruction modifie la 

valeur d’une donnée dans une zone mémoire, la seconde utilise cette zone 

mémoire alors que la valeur n’a pas été mise à jour. Pour répondre à cette 

problématique nous avons créé un nouveau composant dans notre chemin de 

données, que vous pouvez voir ci-dessous en figure 9.  

 

Figure 9 Chemin de données avec gestion des aléas 

Si le composant détecte que l’instruction envoyée par la mémoire d’instruction, 

provoque un aléa avec une des instructions déjà présentes dans le chemin de 

données, alors il bloque la mémoire d’instruction et envoie des NOP dans le 

chemin de donnée. Une fois l’aléa supprimé il envoie l’instruction bloquée et 

débloque la mémoire d’instruction.  

On peut souligner que la détection d’aléa se fera uniquement sur les 3 premiers 

étages, en effet le banc registre contient un bypass qui permet de lire et d’écrire 

en même temps.  
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I.5.2) CONDITIONS DE DETECTION D’ALEA   

     Nous souhaitons avoir les conditions les plus général possible pour détecter nos 

alea, cela évitera toute sorte d’ambigüité et nous permettra de gérer simplement 

tous les cas possibles. On peut commencer par les aléas provoqués par les 

instructions MUL, SOU et ADD. 

 

Si l’instruction rentrante est ADD, MUL ou SOU alors zone B et C doivent être 

différentes des zones A des 3 instructions en cours d’exécution. On ne déclenche 

pas d’alea sur les instructions en cours d’exécution qui seraient des STORE.  

On peut maintenant poursuivre par les aléas provoquer par l’instructions COP et 

STORE. 

 

 

Si l’instruction rentrante est COP ou STORE la zone B doit être différente des zones 

A des 3 instructions en cours d’exécution.  

 

On peut souligner qu’une instruction rentrante de type AFC ou LOAD, ne peuvent 

pas provoquer d’alea, et exerceront une influence uniquement si elles sont déjà 

présentes dans le chemin de données. On doit également détecter un alea 

uniquement sur des instructions, il faut donc vérifier l’opcode pour ne pas 

déclencher d’alea sur un NOP.  

Note :( Nous conseillions de lire en priorité la partie I.5.4 avant la partie I.5.3) 
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I.5.3) SIMULATION FONCTIONNELLE DES ALEA  

     Un point a souligné est l’instruction NOP, en effet un NOP ne doit rien faire est 

par cela on n’entend qu’il ne doit pas modifier un registre ou un espace mémoire, 

il peut cependant rentrer dans l’alu, provoquer une lecture du banc de registre ou 

de la mémoire. D’un point de vue extérieur, ces interactions ne provoquent pas de 

comportement indésirable de la part du microprocesseur, cela étant il provoque 

une consommation inutile.  

 

I.5.3.1) ALEA SIMPLE (EXEMPLE : ADD) 

Une première alea simple à percevoir, est une succession deux 2 AFC suivie d’une 

addition des deux registres, cette situation est simulée dans le chronogramme ci-

dessous.  

 

Figure 10 Simulation fonctionnelle alea exemple ADD 

On envoie une première instruction « 06001200 » = R0<= 12  

On envoie une seconde instruction « 06001200 » =  R1<= 12  

On envoie une troisième instruction « 01020100 » = R2<= R1+R0 

 Evidement les registres R0 et R1 ne sont pas à jour au moment de l’addition donc 

une « bulle » (ici en jaune) est insérer, cette bulle est d’une durée de 3 NOP.   
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I.5.3.2) ALEA COMPLEXE  (EXEMPLE : COP) 

Un second exemple d’alea, est un alea entrainé par deux instructions non succes-

sives, cette situation est simulée dans le chronogramme ci-dessous. 

 

Figure 11 Simulation fonctionnelle alea exemple COP 

On envoie une première instruction « 01030000 » = R3<= R0+R0  

On envoie une seconde instruction « 05040000 »  =  R4<= R5  

On envoie une troisième instruction « 05040300 » = R4<= R3 

Ici l’alea est entre la troisième et la première instruction, la bulle(ici en jaune)  est 

équivalente à 2 NOP. On constate à travers cette situation que le nombre de NOP 

s’adapte en fonction de la distance séparant les aléas.  

 

I.5.3.3) ALEA COMPLEMENTAIRE  (EXEMPLE : STORE) 

Enfin on peut observer un dernier exemple d’alea, c’est un alea entrainé par deux 

instructions non successives, cette situation est simulée dans le chronogramme ci-

dessous. 

 

Figure 12 Simulation fonctionnelle alea exemple Store 

On envoie une première instruction « 05050100 » = R5<= R1  

On envoie une seconde instruction « 06001200 » =  R0<= 12  

On envoie une troisième instruction « 06001200 » =  R0<= 12 

On envoie une quatrième instruction « 08020500 »= @02 <=R5  

Ici l’aléa est entre la quatrième et première instruction la bulle(ici en jaune)  est 

équivalente à 1 NOP. On constate a travers cette situation que le nombre de NOP 

s’adapte en fonction de la distance séparant les aléas et que nous avons traiter tous 

les cas possibles. 
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I.5.4) / ! \NOTE SUR LES CHRONOGRAMMES DES SIMULATIONS    

     On ne peut pas présenter un test qui soit exhaustif sur les aléas, cela serait trop 

long. Nous avons donc choisi de vous présenter trois cas possibles, ils illustrent les 

différentes conditions d’un alea. En parcourant la simulations complète du proces-

seur vous trouverez les autres cas d’aléas.  

     Si on observe attentivement les simulations un détail surprenant apparait. En 

effet, sur les simulations il semble que l’étage 2 soit décalé des autres étages, ce 

qui est en contradiction avec un fonctionnement pipeline. En réalité il s’agit d’un 

faux décalage, sur les simulations précédentes on observe l’entrée des buffers 

mais la transmission se fait en sortie sur une clock qui est mutualisée. Un moyen 

simple de le vérifier est de regarder l’une des sorties des MUXS.  

 

Figure 13 Simulation du Pipeline 

L’effet pipeline est bien nominale, seul le compteur PC (ici nommée choix_num) 

est décalé cela ne pose évidemment pas de soucis et cela sera explicité dans la 

partie 3 de ce rapport.  
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II) IMPLEMENTATION DU MICROPROCESSEUR RISC  

 

II.1) CHOIX D’IMPLEMENTATION  

Nous aurions pu implémenter nos composants et les faires fonctionner de diffé-

rentes manières. Pour les composants nous nous sommes contentés de les conce-

voir celons les indications du sujet. Pour le chemin de donnes nous avons décidé 

d’implanter les 4 MUX délimitant les étages du pipeline sous forme de composant. 

Les composants discrets type LC et simple MUX ont été implémentés de manière 

concurrente directement dans le chemin de données. Nous pensons que malgré la 

perte de lisibilité, cela accroit les performances de notre microprocesseur. 

 

II.2) CHOIX D’AMELIORATION ANALYSE 

II.2.1) AXE D’AMELIORATION  

A la fin du projet plusieurs possibilités s’offrent à nous, on peut améliorer notre 

processeur.  

Pour cela différentes opportunités se présentent à nous , le premier est de complé-

ter notre jeu d’instruction notamment en ajourant des fonctions telles que le OU 

logique, ET logique ect. Ces fonctions sont déjà intégrées dans notre ALU, il fau-

drait donc modifier notre chemin de données et notre gestion des aléas.  

Un autre axe d’amélioration est l’ajout d’instruction de type saut et saut condi-

tionné. Cet axe est intéressant car il permet de réaliser des algorithmes plus com-

plexes.  

Un quatrième axe d’amélioration est de réduire aux maximum la consommation de 

notre microprocesseur et sa superficie.  

Enfin un dernier axe possible est l’optimisation du système pour augmenter sa fré-

quence de fonctionnement. Il s’agit du choix que nous avons décidé de faire, il est 

purement arbitraire. 
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II.2.2) ANNALYSE FREQUENTIELLE ET CHEMIN CRITIQUE  

Notre première rapport Timming nous indique une fréquence une fréquence MAX 

de 65MHz, ce résultat ne nous satisfait évidemment pas.  

 

Figure 14 Rapport Timming 

On pourrait penser que la gestion des aléas sur front descendant diminue notre 

fréquence max, cependant le chemin critique nous indique que nous devrions nous 

pencher sur nos mémoires.  

Après avoir optimisé notre chemin de mémoire, nous avons un schématique d’im-

plémentation plus claire :  

 

Figure 15 Schématique TOP 
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Cependant notre fréquence n’est pas plus importante, on regarde donc de nouveau 

notre chemin critique :  

 

Malgré nos efforts nous n’avons pas réussi à diminuer les temps de propagation à 

travers ce chemin.  

II.3) PERFORMANCE  

III.3.1) CONSOMMATION ENERGETIQUE 

Bien que nos modifications n’aient pas permis d’augmenter la fréquence la con-

sommation énergétique à fortement diminué. La diminution est de l’ordre de 175%. 

Vous trouverez ci-dessous le rapport récapitulatif de puissance.  
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III.3.2) COMPOSANTS  

Notre consommation est intrinsèquement liée à notre fréquence et à notre nombre 

de composants. Vous trouverez ci-dessous, des extraits de rapport indiquant les 

différents composant utilisés pour notre projet et en quelles proportions. 
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CONCLUSION 

 

Le projet a été très intéressant à réaliser, la découverte du logiciel Vivado a 

été instructive pour nous qui n’avions travaillé que sur Qartus. Ce projet nous a 

également permis d’appliquer de manière concrète les différentes notions vues en 

cours de modélisation des composants et architectures numériques.  

Nous avons rencontré de nombreuses difficultés, notamment lors de la 

tentative d’optimisation des chemins critiques, et nous ne sommes finalement pas 

parvenus à nos fins. Malgré cet échec nous sommes satisfaits de notre gestions des 

aléas. De plus, la démarche nous a permis d’aller plus loin dans l’utilisation des 

différents outils proposés par Vivado, et sur la conception Vhdl de façon générale.  

Les connaissances et la compréhension de l’architecture d’un 

microprocesseur nous sont également utiles, on peut qualifier ces connaissances 

de compétences transversales.  

 


