

Conception d’un microprocesseur de type RISC

Ecrit par Simon Paris et Cédric Chanfreau le 02/12/2023

Ingénieur en Alternance Automatique Électronique

à l’Institut National des Sciences Appliquées

Conception d’un microprocesseur de type RISC

Ecrit par Simon Paris et Cédric Chanfreau le 02/12/2023

Ingénieur en Alternance Automatique Électronique

à l’Institut National des Sciences Appliquées

TABLE DES MATIERES

Introduction .. 1

I) L’architecture du microprocesseur RISC ... 2

I.1) UNITE Arithmétique et Logique ... 2

I.1.1) Descriptions fonctionnelles ... 2

I.1.2) Simulation fonctionnelle .. 3

I.2) Banc de registres ... 4

I.2.1) Descriptions fonctionnelle .. 4

I.2.2) Simulation fonctionnelle .. 4

I.3) Mémoire de données ... 5

I.3.1) Descriptions fonctionnelles ... 5

I.3.2) Simulation fonctionnelle .. 6

I.4) Mémoire d’instruction.. 7

I.4.1) Descriptions fonctionnelle .. 7

I.4.2) Simulation fonctionnelle .. 7

I.5) Gestion des ALEA .. 8

I.5.1) Gestion descriptions fonctionnelle des ALEA ... 8

I.5.2) Conditions de détéction d’ALEA ... 9

I.5.3) Simulation fonctionnelle des Alea ... 10

I.5.3.1) Alea simple (exemple : ADD) ... 10

I.5.3.2) Alea complexe (exemple : COP) ... 11

I.5.3.3) Alea complementaire (exemple : STORE) ... 11

I.5.4) / ! \Note sur les chronogrammes des simulations ... 12

II) Implementation du microprocesseur RISC .. 13

II.1) Choix d’implementation ... 13

II.2) Choix d’amélioration analyse ... 13

II.2.1) Axe d’amélioration ... 13

II.2.2) Annalyse frequentielle et chemin critique ... 14

II.3) Performance ... 15

III.3.1) Consommation énergétique ... 15

III.3.2) Composants .. 16

Conclusion .. 17

1

Figure 1 Schéma fonctionnel d’un ALU .. 2

Figure 2 Simulation fonctionnelle ALU ... 3

Figure 3 Schéma fonctionnel Banc de registres ... 4

Figure 4 Simulation fonctionnelle Banc de registres .. 4

Figure 5 Schéma fonctionnel Mémoire de données ... 5

Figure 6 Simulation fonctionnelle Mémoire de données ... 6

Figure 7 Schéma fonctionnel Mémoire d'instructions .. 7

Figure 8 Simulation fonctionnelle Mémoire d'instructions ... 7

Figure 9 Chemin de données avec gestion des aléas .. 8

Figure 10 Simulation fonctionnelle alea exemple ADD .. 10

Figure 11 Simulation fonctionnelle alea exemple COP .. 11

Figure 12 Simulation fonctionnelle alea exemple Store ... 11

Figure 13 Simulation du Pipeline ... 12

Figure 14 Rapport Timming ... 14

Figure 15 Schématique TOP ... 14

1

INTRODUCTION

Notre projet est de concevoir un microprocesseur de type RISC, désigné en

VHDL sur l’outil de développement, de simulation et d’implémentation Vivado.

Cette architecture promet une exécution plus rapide des programmes grâce a ses

5 niveaux de pipeline. Ce rapport sera structuré de manière à couvrir les diffé-

rentes phases du projet.

 Nous commencerons par présenter l’architecture du microprocesseur avec les dif-

férents composants clés tels que l'Unité Arithmétique et Logique (ALU), le Banc de

Registres, la Mémoire d'Instructions, la Mémoire de Données, et d'autres éléments

essentiels qui guideront la conception de notre microprocesseur. Nous aborderons

également la gestion des aléas, un aspect crucial de la conception.

Enfin, nous analyserons les résultats de synthèse soulignant les optimisations réa-

lisées pour augmenter la fréquence de fonctionnement ainsi que la diminution de

sa consommation énergétique.

Note :

Le présent rapport n’a pas vocation à être imprimé, il serait illisible. Nous conseillons donc sa

lecture au format PDF. Les captures d’écrans étant qualitatives, il est possible zoomer dessus pour

analyser leur contenu (notamment les chronogrammes). Nous conseillions également de lire en

priorité la partie I.5.4 avant la partie I.5.3, cela évitera toute confusion.

2

I) L’ARCHITECTURE DU MICROPROCESSEUR RISC

Dans cette partie nous nous pencherons sur l’architecture d’un microproces-

seur RISC, nous ne rentrerons cependant pas dans les détails. En effet il existe

beaucoup de documentation à ce sujet, qui sont claires et synthétiques, elles n’ont

pas besoin de copie (qui elle serait approximative). Nous présenterons donc de

manière fonctionnelle les 5 éléments présents dans notre microprocesseur l’ALU,

la mémoire données, la mémoire d’instruction et le banc de registres.

 I.1) UNITE ARITHMETIQUE ET LOGIQUE

 I.1.1) DESCRIPTIONS FONCTIONNELLES

L'Unité Arithmétique et Logique (ALU) est le composant central permettant

l'exécution des opérations arithmétiques et logiques du microprocesseur. Le

schéma fonctionnel de l'ALU est donné ci-dessous en figure 1. Le Bus de contrôle

(Ctrl_ALU) détermine le type d'opération à effectuer. L’ALU prend deux entrées A

et B de 8 bits, qui seront les opérandes et S le résultat de l’opération également sur

8 bits. Nous avons également en sortie 4 flags, Negatif, Carry, Zero et Overflow.

Figure 1 Schéma fonctionnel d’un ALU

3

 I.1.2) SIMULATION FONCTIONNELLE

 Vous trouverez ci-dessous en Figure 2 l’une des simulations fonctionnelles de

notre ALU. Cette simulation ne dépendant pas du temps et de l’implémentation elle

nous permet uniquement de vérifier le fonctionnement logique du circuit.

Figure 2 Simulation fonctionnelle ALU

 Ci-dessous vous trouverez le tableau N°1 permettant de faire le lien entre bus de

contrôle et les opérations arithmétiques et logiques réalisées.

Tableau 1 OPCODE ALU

Addition Ope="000" S = A + B

Soustraction Ope="001” S = A - B

Multiplication Ope="010" S = A x B

ET logique Ope="011" S = A AND B

OU logique Ope="100" S = A OR B

NOT logique Ope="101" S = NOT A

Le résultat de chaque opération est stocké dans la sortie S. De plus, le composant

génère des informations sur le résultat sous forme de drapeaux dans la sortie Flag,

indiquant si une opération a généré une retenue, si le résultat est négatif, s'il est

égal à zéro, ou s'il y a eu un dépassement.

4

I.2) BANC DE REGISTRES

I.2.1) DESCRIPTIONS FONCTIONNELLE

Le Banc de Registres, intégré dans notre architecture, représente un élément fon-

damental pour le stockage temporaire des données pendant l'exécution des ins-

tructions. Il est constitué de 16 registres de 8 bits, offrant une capacité de stockage

significative pour les opérations en cours. Cette configuration permet d'effectuer

simultanément des opérations d'accès en lecture via les ports QA et QB, ainsi que

des opérations d'écriture via le port W_in.

Figure 3 Schéma fonctionnel Banc de registres

I.2.2) SIMULATION FONCTIONNELLE

Une simulation a été effectuée pour évaluer la lecture, l'écriture et le comportement

général du banc de registres. Les valeurs ont été manipulées pour garantir une

gestion appropriée des données en fonction de l’horloge. Cela inclut des scénarios

tels que la lecture et l’écriture simultanée sur une sortie (bypass), ou encore la lec-

ture simple dans un registre via le port d'écriture.

Figure 4 Simulation fonctionnelle Banc de registres

Test 1 - Sélection de l’adresse 0 sur addA et addB

- Mode lecture de la donnée 0

Test 2 - Sélection de l’adresse 1 sur addA

- Ecriture de la donnée 55 sur addA (bypass*)

Test 3 - Sélection de l’adresse 0 puis 2 sur addB

- Ecriture de la donnée aa puis ff sur addB (sélectionné avec

addW)

Test 4 - Lecture de addA et addB avec la donnée précédemment

écrite suivi par l’activation du reset

5

*Le bypass, est une technique permettant de lire et d’écrire sur un registre en

même temps. Il est utilisé dans les processeurs pour améliorer l'efficacité en redi-

rigeant directement les résultats calculés vers les instructions suivantes qui en ont

besoin, sans attendre l'écriture dans le registre.

I.3) MEMOIRE DE DONNEES

I.3.1) DESCRIPTIONS FONCTIONNELLES

La mémoire de données est utilisée pour stocker des informations temporaires né-

cessaires au fonctionnement d'un programme. Les opérations sur la mémoire de

données incluent la lecture des valeurs stockées à des adresses spécifiques et

l'écriture de nouvelles valeurs à ces adresses.

Figure 5 Schéma fonctionnel Mémoire de données

@(7:0) : Adresse à laquelle les opérations de lecture ou écriture doivent être effec-

tuées.

IN(7:0) : Entrée de données à écrire dans la mémoire à l'adresse spécifiée.

RW : Mode d'opération de la mémoire (0 pour lecture, 1 pour écriture).

RST : Entrée de réinitialisation de la mémoire.

CLK : Entrée de l'horloge servant à déclencher les opérations de la mémoire.

OUT(7:0) : Sortie renvoyant les données lues à partir de l'adresse spécifiée.

6

I.3.2) Simulation fonctionnelle

Figure 6 Simulation fonctionnelle Mémoire de données

Test 1 Ecriture de la donnée ff sur le registre

0

Test 2 Lecture de la donnée écrite sur le re-

gistre 0

Test 3 Ecriture de la donnée af sur le registre

1

Test 4 Lecture du registre 1 puis le registre 0

Test 5 Mise à 1 du reset

À chaque front montant de l'horloge (CLK), la mémoire réagit en fonction des si-

gnaux de contrôle (RW) et de réinitialisation (RST). En cas de réinitialisation (RST à

1), la mémoire est remise à zéro. En mode écriture (RW à 1), les données d'entrée

(data) sont écrites à l'adresse spécifiée. En mode lecture (RW à 0), les données

situées à l'adresse spécifiée sont renvoyées via la sortie (OUT).

7

I.4) MEMOIRE D’INSTRUCTION

I.4.1) DESCRIPTIONS FONCTIONNELLE

La mémoire d'instructions stocke la liste d'instructions machine qui composent le

programme exécuté par le processeur. Chaque instruction est associée à une

adresse mémoire spécifique. Chaque instruction est représentée sur 32 bits et est

accessible à une adresse spécifique dans la mémoire.

Figure 7 Schéma fonctionnel Mémoire d'instructions

A [7 :0] : Entrée représentant l'adresse à laquelle les opérations de lecture doivent

être effectuées.

S [31 :0] : Sortie renvoyant l'instruction de 32 bits lue à partir de l'adresse spécifiée

I.4.2) Simulation fonctionnelle

Figure 8 Simulation fonctionnelle Mémoire d'instructions

Test Ecriture de l’instruction dans le re-

gistre sélectionné par A[7:0] sur front

montant

À chaque front montant de l'horloge (clk), la mémoire réagit en renvoyant l'instruc-

tion située à l'adresse spécifiée via la sortie S.

8

I.5) GESTION DES ALEA

I.5.1) GESTION DESCRIPTIONS FONCTIONNELLE DES ALEA

On distingue les aléas de données et les aléas de branchement. Nous nous

intéresserons aux aléas de données. Un alea de donnée est un évènement, cet

évènement est déclenché par au moins deux instructions s’exécutant de manière

consécutive et de manière incompatible. Une première instruction modifie la

valeur d’une donnée dans une zone mémoire, la seconde utilise cette zone

mémoire alors que la valeur n’a pas été mise à jour. Pour répondre à cette

problématique nous avons créé un nouveau composant dans notre chemin de

données, que vous pouvez voir ci-dessous en figure 9.

Figure 9 Chemin de données avec gestion des aléas

Si le composant détecte que l’instruction envoyée par la mémoire d’instruction,

provoque un aléa avec une des instructions déjà présentes dans le chemin de

données, alors il bloque la mémoire d’instruction et envoie des NOP dans le

chemin de donnée. Une fois l’aléa supprimé il envoie l’instruction bloquée et

débloque la mémoire d’instruction.

On peut souligner que la détection d’aléa se fera uniquement sur les 3 premiers

étages, en effet le banc registre contient un bypass qui permet de lire et d’écrire

en même temps.

9

I.5.2) CONDITIONS DE DETECTION D’ALEA

 Nous souhaitons avoir les conditions les plus général possible pour détecter nos

alea, cela évitera toute sorte d’ambigüité et nous permettra de gérer simplement

tous les cas possibles. On peut commencer par les aléas provoqués par les

instructions MUL, SOU et ADD.

Si l’instruction rentrante est ADD, MUL ou SOU alors zone B et C doivent être

différentes des zones A des 3 instructions en cours d’exécution. On ne déclenche

pas d’alea sur les instructions en cours d’exécution qui seraient des STORE.

On peut maintenant poursuivre par les aléas provoquer par l’instructions COP et

STORE.

Si l’instruction rentrante est COP ou STORE la zone B doit être différente des zones

A des 3 instructions en cours d’exécution.

On peut souligner qu’une instruction rentrante de type AFC ou LOAD, ne peuvent

pas provoquer d’alea, et exerceront une influence uniquement si elles sont déjà

présentes dans le chemin de données. On doit également détecter un alea

uniquement sur des instructions, il faut donc vérifier l’opcode pour ne pas

déclencher d’alea sur un NOP.

Note :(Nous conseillions de lire en priorité la partie I.5.4 avant la partie I.5.3)

10

I.5.3) SIMULATION FONCTIONNELLE DES ALEA

 Un point a souligné est l’instruction NOP, en effet un NOP ne doit rien faire est

par cela on n’entend qu’il ne doit pas modifier un registre ou un espace mémoire,

il peut cependant rentrer dans l’alu, provoquer une lecture du banc de registre ou

de la mémoire. D’un point de vue extérieur, ces interactions ne provoquent pas de

comportement indésirable de la part du microprocesseur, cela étant il provoque

une consommation inutile.

I.5.3.1) ALEA SIMPLE (EXEMPLE : ADD)

Une première alea simple à percevoir, est une succession deux 2 AFC suivie d’une

addition des deux registres, cette situation est simulée dans le chronogramme ci-

dessous.

Figure 10 Simulation fonctionnelle alea exemple ADD

On envoie une première instruction « 06001200 » = R0<= 12

On envoie une seconde instruction « 06001200 » = R1<= 12

On envoie une troisième instruction « 01020100 » = R2<= R1+R0

 Evidement les registres R0 et R1 ne sont pas à jour au moment de l’addition donc

une « bulle » (ici en jaune) est insérer, cette bulle est d’une durée de 3 NOP.

11

I.5.3.2) ALEA COMPLEXE (EXEMPLE : COP)

Un second exemple d’alea, est un alea entrainé par deux instructions non succes-

sives, cette situation est simulée dans le chronogramme ci-dessous.

Figure 11 Simulation fonctionnelle alea exemple COP

On envoie une première instruction « 01030000 » = R3<= R0+R0

On envoie une seconde instruction « 05040000 » = R4<= R5

On envoie une troisième instruction « 05040300 » = R4<= R3

Ici l’alea est entre la troisième et la première instruction, la bulle(ici en jaune) est

équivalente à 2 NOP. On constate à travers cette situation que le nombre de NOP

s’adapte en fonction de la distance séparant les aléas.

I.5.3.3) ALEA COMPLEMENTAIRE (EXEMPLE : STORE)

Enfin on peut observer un dernier exemple d’alea, c’est un alea entrainé par deux

instructions non successives, cette situation est simulée dans le chronogramme ci-

dessous.

Figure 12 Simulation fonctionnelle alea exemple Store

On envoie une première instruction « 05050100 » = R5<= R1

On envoie une seconde instruction « 06001200 » = R0<= 12

On envoie une troisième instruction « 06001200 » = R0<= 12

On envoie une quatrième instruction « 08020500 »= @02 <=R5

Ici l’aléa est entre la quatrième et première instruction la bulle(ici en jaune) est

équivalente à 1 NOP. On constate a travers cette situation que le nombre de NOP

s’adapte en fonction de la distance séparant les aléas et que nous avons traiter tous

les cas possibles.

12

I.5.4) / ! \NOTE SUR LES CHRONOGRAMMES DES SIMULATIONS

 On ne peut pas présenter un test qui soit exhaustif sur les aléas, cela serait trop

long. Nous avons donc choisi de vous présenter trois cas possibles, ils illustrent les

différentes conditions d’un alea. En parcourant la simulations complète du proces-

seur vous trouverez les autres cas d’aléas.

 Si on observe attentivement les simulations un détail surprenant apparait. En

effet, sur les simulations il semble que l’étage 2 soit décalé des autres étages, ce

qui est en contradiction avec un fonctionnement pipeline. En réalité il s’agit d’un

faux décalage, sur les simulations précédentes on observe l’entrée des buffers

mais la transmission se fait en sortie sur une clock qui est mutualisée. Un moyen

simple de le vérifier est de regarder l’une des sorties des MUXS.

Figure 13 Simulation du Pipeline

L’effet pipeline est bien nominale, seul le compteur PC (ici nommée choix_num)

est décalé cela ne pose évidemment pas de soucis et cela sera explicité dans la

partie 3 de ce rapport.

13

II) IMPLEMENTATION DU MICROPROCESSEUR RISC

II.1) CHOIX D’IMPLEMENTATION

Nous aurions pu implémenter nos composants et les faires fonctionner de diffé-

rentes manières. Pour les composants nous nous sommes contentés de les conce-

voir celons les indications du sujet. Pour le chemin de donnes nous avons décidé

d’implanter les 4 MUX délimitant les étages du pipeline sous forme de composant.

Les composants discrets type LC et simple MUX ont été implémentés de manière

concurrente directement dans le chemin de données. Nous pensons que malgré la

perte de lisibilité, cela accroit les performances de notre microprocesseur.

II.2) CHOIX D’AMELIORATION ANALYSE

II.2.1) AXE D’AMELIORATION

A la fin du projet plusieurs possibilités s’offrent à nous, on peut améliorer notre

processeur.

Pour cela différentes opportunités se présentent à nous , le premier est de complé-

ter notre jeu d’instruction notamment en ajourant des fonctions telles que le OU

logique, ET logique ect. Ces fonctions sont déjà intégrées dans notre ALU, il fau-

drait donc modifier notre chemin de données et notre gestion des aléas.

Un autre axe d’amélioration est l’ajout d’instruction de type saut et saut condi-

tionné. Cet axe est intéressant car il permet de réaliser des algorithmes plus com-

plexes.

Un quatrième axe d’amélioration est de réduire aux maximum la consommation de

notre microprocesseur et sa superficie.

Enfin un dernier axe possible est l’optimisation du système pour augmenter sa fré-

quence de fonctionnement. Il s’agit du choix que nous avons décidé de faire, il est

purement arbitraire.

14

II.2.2) ANNALYSE FREQUENTIELLE ET CHEMIN CRITIQUE

Notre première rapport Timming nous indique une fréquence une fréquence MAX

de 65MHz, ce résultat ne nous satisfait évidemment pas.

Figure 14 Rapport Timming

On pourrait penser que la gestion des aléas sur front descendant diminue notre

fréquence max, cependant le chemin critique nous indique que nous devrions nous

pencher sur nos mémoires.

Après avoir optimisé notre chemin de mémoire, nous avons un schématique d’im-

plémentation plus claire :

Figure 15 Schématique TOP

15

Cependant notre fréquence n’est pas plus importante, on regarde donc de nouveau

notre chemin critique :

Malgré nos efforts nous n’avons pas réussi à diminuer les temps de propagation à

travers ce chemin.

II.3) PERFORMANCE

III.3.1) CONSOMMATION ENERGETIQUE

Bien que nos modifications n’aient pas permis d’augmenter la fréquence la con-

sommation énergétique à fortement diminué. La diminution est de l’ordre de 175%.

Vous trouverez ci-dessous le rapport récapitulatif de puissance.

16

III.3.2) COMPOSANTS

Notre consommation est intrinsèquement liée à notre fréquence et à notre nombre

de composants. Vous trouverez ci-dessous, des extraits de rapport indiquant les

différents composant utilisés pour notre projet et en quelles proportions.

17

CONCLUSION

Le projet a été très intéressant à réaliser, la découverte du logiciel Vivado a

été instructive pour nous qui n’avions travaillé que sur Qartus. Ce projet nous a

également permis d’appliquer de manière concrète les différentes notions vues en

cours de modélisation des composants et architectures numériques.

Nous avons rencontré de nombreuses difficultés, notamment lors de la

tentative d’optimisation des chemins critiques, et nous ne sommes finalement pas

parvenus à nos fins. Malgré cet échec nous sommes satisfaits de notre gestions des

aléas. De plus, la démarche nous a permis d’aller plus loin dans l’utilisation des

différents outils proposés par Vivado, et sur la conception Vhdl de façon générale.

Les connaissances et la compréhension de l’architecture d’un

microprocesseur nous sont également utiles, on peut qualifier ces connaissances

de compétences transversales.

