INSTITUT NATIONAL
‘ DES SCIENCES
TOULOUSE

Conception d’un microprocesseur de type RISC

Ecrit par Simon Paris et Cédric Chanfreau le 02/12/2023
Ingénieur en Alternance Automatique Electronique

a I'Institut National des Sciences Appliquées

INSA

TOULOUSE

INSA

Conception d’un microprocesseur de type RISC

NSTITUT HATIONAL
DES SCIENCES
APPLIQUEES
TOULDUSE

Ecrit par Simon Paris et Cédric Chanfreau le 02/12/2023
Ingénieur en Alternance Automatique Electronique

a I'Institut National des Sciences Appliquées

INSA

INSA

TOULOUSE
1 s T L e 1
I) L’architecture du microprocesseur RISCccciiiiiiiinnirmn i i s ssnn s snnnsannnss 2
I.1) UNITE Arithmétique et LOGIQUEccciriuuuiiiiiiiiiirei e e e e s e 2
I.1.1) Descriptions fonCHONNEIIES.c.iiiuiiiiciceer et re s re s re e e e re e rnnas 2
1.1.2) Simulation foNCHONNEIIEiiiiiiei e r e rna s 3
L) 2 1= e =T =Y £ =Y TN 4
1.2.1) Descriptions fonctionnellecooiiuiiiiiiiiiie e e e e 4
1.2.2) Simulation foNCHONNEIIEiiiii i 4
1.3) MEMOIre de AOMIEES.....civuuiiiiiiiiiri e e e e e e r e e r e 5
1.3.1) Descriptions fonctioNnElles......... e e e 5
1.3.2) Simulation fonctionNnElleccouiuuuiiiiiiiiiiii e 6
I.4) Mémoire d’ InStIUCHON. .. ciuuuiiiiiiiiii i e e e e 7
1.4.1) Descriptions fonctionnelleooiiieeiiiiii e e e e 7
1.4.2) Simulation fonctionNNElleccoiiuuuiiiiiiiiiiii 7
1.5) GeStion deS ALEAcoiiiiie ettt 8
1.5.1) Gestion descriptions fonctionnelle des ALEAccuuoiiiieuiiimieeierr e ere e rra s ere s eraaans 8
1.5.2) Conditions de détéction A’ALEAcoiiiiuuiiiiimiiniir e e e e 9
1.5.3) Simulation fonctionnelle Aes AlEacciriuuriiriniiiiiee s e s e re e rra e reas 10
1.5.3.1) Alea simple (eXemPle : ADD)ciiiiuuiierenrierenrerran s sereaseerensserrna s ereaserransaerens 10
1.5.3.2) Alea complexe (eXemple : COP)ccuuiiiiiiuiiiiiieii i err e e re e ra e reas 11
1.5.3.3) Alea complementaire (exemple : STORE)ccccciiiiimiiiiimiiiiire e 11
1.5.4) / | \Note sur les chronogrammes des Simulationscc.ceriereuiiimiennieri e 12
II) Implementation du microprocesseur RISCcciiiiiiiiiiisiiissnns s s i s s i snnes 13
II.1) Choix A’IMPlementationccuuiiiiiiuiiiiirr e e e e reas 13
I1.2) Choix d’amélioration @aNalYSeccuruuuuiiiiiiiiiiiii e e e e 13
I1.2.1) Axe d’ameélioration.iiiieuiiiiiiiicri e e e e e 13
I1.2.2) Annalyse frequentielle et chemin Critiqueccvvuiiiiiiiiiii 14
I1.3) PeIfOXIMANCE ...ciiiiiiiiiiii e e e e 15
II1.3.1) Consommation ENergétiquecevuiiririruiiiiiiiiiiiir e e e e 15
II1.3.2) COIMPOSANLS ...iiieirireuunisiiieerrrss e e e e e e s s e s s e e r e s s s e s e e e e e e s s s e e e e e n e e s s 16

CONCIUSION tuutiiiiiiiiiiiiiitsssss s s saaaaassssnssasssssssssaaassssssnnsnnsnsssssssnsssssnnnnnnnnnsnnnnnnnnnns 17

INSA

TOULOUSE
Figure 1 Schéma fonctionnel d’un ALUcoiiiuiiiiiiiiiire e s s e re e e 2
Figure 2 Simulation fonctionnelle ALUccuiuuuuiiiiiiiiiiii s e e e e eaaas 3
Figure 3 Schéma fonctionnel Banc de regisStrescuuiiriruuiiiiiiieiiiiii e e 4
Figure 4 Simulation fonctionnelle Banc de registres........uvieiiiiiiiiiiiiiiinerrrr e e 4
Figure 5 Schéma fonctionnel Mémoire de dONNEEs.........cuuuiiiiiiiiiiiiiiiir e e 5
Figure 6 Simulation fonctionnelle Mémoire de dONNEESceviireuiiiiieinieii e e 6
Figure 7 Schéma fonctionnel Mémoire d'INStruCtionSoiiiieuiiiiiiiiniiire e e e 7
Figure 8 Simulation fonctionnelle Mémoire d'inStrucCtionscviireuiiiireuiiierr e e 7
Figure 9 Chemin de données avec gestion des aléas........coouviuiiiiiiuiniiiieirierr e e 8
Figure 10 Simulation fonctionnelle alea exemple ADD..........ccuuiiiimiuuiriemeneirrre e e s e rra e eeeas 10
Figure 11 Simulation fonctionnelle alea exemple COP...........ccceriiinnnnnnns 11
Figure 12 Simulation fonctionnelle alea exemple Store..........ccciviiiiiiiiii s 11
Figure 13 Simulation du Pipelinecoiiiiiiiiiiiiii e 12
Figure 14 Rapport TiMmIIGoooiiiiiiiiiiiiiii i s s s 14
Figure 15 Schématique TOP..........cooiiiiiiiii e e e 14

W

INSA

TOULOUSE

INTRODUCTION

Notre projet est de concevoir un microprocesseur de type RISC, désigné en
VHDL sur 'outil de développement, de simulation et d’implémentation Vivado.
Cette architecture promet une exécution plus rapide des programmes grace a ses
5 niveaux de pipeline. Ce rapport sera structuré de maniére a couvrir les diffé-
rentes phases du projet.

Nous commencerons par présenter 1’architecture du microprocesseur avec les dif-
férents composants clés tels que 1'Unité Arithmétique et Logique (ALU), le Banc de
Registres, la Mémoire d'Instructions, la Mémoire de Données, et d'autres éléments
essentiels qui guideront la conception de notre microprocesseur. Nous aborderons
également la gestion des aléas, un aspect crucial de la conception.

Enfin, nous analyserons les résultats de synthese soulignant les optimisations réa-
lisées pour augmenter la fréquence de fonctionnement ainsi que la diminution de
sa consommation énergétique.

Note :

Le présent rapport n’a pas vocation a étre imprimé, il serait illisible. Nous conseillons donc sa
lecture au format PDF. Les captures d’écrans étant qualitatives, il est possible zoomer dessus pour
analyser leur contenu (notamment les chronogrammes). Nous conseillions également de lire en
priorité la partie 1.5.4 avant la partie 1.5.3, cela évitera toute confusion.

W

INSA

TOULOUSE

I) ’ARCHITECTURE DU MICROPROCESSEUR RISC

Dans cette partie nous nous pencherons sur 1’architecture d’un microproces-
seur RISC, nous ne rentrerons cependant pas dans les détails. En effet il existe
beaucoup de documentation a ce sujet, qui sont claires et synthétiques, elles n’ont
pas besoin de copie (qui elle serait approximative). Nous présenterons donc de
maniére fonctionnelle les 5 éléments présents dans notre microprocesseur I’ALU,
la mémoire données, la mémoire d’instruction et le banc de registres.

I.1) UNITE ARITHMETIQUE ET LOGIQUE

I.1.1) DESCRIPTIONS FONCTIONNELLES

L'Unité Arithmétique et Logique (ALU) est le composant central permettant
l'exécution des opérations arithmétiques et logiques du microprocesseur. Le
schéma fonctionnel de I'ALU est donné ci-dessous en figure 1. Le Bus de contrdle
(Ctrl_ALU) détermine le type d'opération a effectuer. I’ALU prend deux entrées A
et B de 8 bits, qui seront les opérandes et S le résultat de I’opération également sur
8 bits. Nous avons également en sortie 4 flags, Negatif, Carry, Zero et Overflow.

N, O, Z, C
A(7:0)___,|
S(7:0)

B(7:0)—,

Ctrl_Alu(2:0)

Figure 1 Schéma fonctionnel d’un ALU

W

INSA

TOULOUSE

[.1.2) SIMULATION FONCTIONNELLE

Vous trouverez ci-dessous en Figure 2 I'une des simulations fonctionnelles de
notre ALU. Cette simulation ne dépendant pas du temps et de I'implémentation elle
nous permet uniquement de vérifier le fonctionnement logique du circuit.

400.000 ns 600.000 ns ‘EIOG‘ 000 ns ,000.000 ns

W Ope[2:0]
W A[7:0]
W B[7:0]
W S[7:0]

8 carry

8 negatif
e zero

@ overflow
W Flag[1:0]

Figure 2 Simulation fonctionnelle ALU

Ci-dessous vous trouverez le tableau N°1 permettant de faire le lien entre bus de
contrdle et les opérations arithmétiques et logiques réalisées.

Tableau 1 OPCODE ALU

[Addition Ope="000" S=A+B

Soustraction Ope="001" S=A-B

Multiplication Ope="010" S=AxB
Ope="011" S=AANDB
Ope="100" S=AORB
Ope="101" S =NOT A

Le résultat de chaque opération est stocké dans la sortie S. De plus, le composant
génere des informations sur le résultat sous forme de drapeaux dans la sortie Flag,
indiquant si une opération a généré une retenue, si le résultat est négatif, s'il est
égal a zéro, ou s'il y a eu un dépassement.

W

INSA

TOULOUSE
I.2) BANC DE REGISTRES

I.2.1) DESCRIPTIONS FONCTIONNELLE

Le Banc de Registres, intégré dans notre architecture, représente un élément fon-
damental pour le stockage temporaire des données pendant l'exécution des ins-
tructions. Il est constitué de 16 registres de 8 bits, offrant une capacité de stockage
significative pour les opérations en cours. Cette configuration permet d'effectuer
simultanément des opérations d'accés en lecture via les ports QA et QB, ainsi que
des opérations d'écriture via le port W_in.

—»
—
—>QA(7:0)
—»
—

Figure 3 Schéma fonctionnel Banc de registres

[.2.2) SIMULATION FONCTIONNELLE

Une simulation a été effectuée pour évaluer lalecture, I'écriture et le comportement
général du banc de registres. Les valeurs ont été manipulées pour garantir une
gestion appropriée des données en fonction de I’horloge. Cela inclut des scénarios
tels que la lecture et I’écriture simultanée sur une sortie (bypass), ou encore la lec-
ture simple dans un registre via le port d'écriture.

> W addA[3:0]
> W addB[3:0]

Figure 4 Simulation fonctionnelle Banc de registres

Test 1 - Sélection de ’adresse 0 sur addA et addB

- Mode lecture de la donnée 0

Test 2 - Sélection de ’adresse 1 sur addA

- Ecriture de la donnée 55 sur addA (bypass*)
Test 3 - Sélection de ’adresse 0 puis 2 sur addB

- Lecture de addA et addB avec la donnée précédemme
écrite suivi par ’activation du reset

INSA

TOULOUSE

*Le bypass, est une technique permettant de lire et d’écrire sur un registre en
méme temps. Il est utilisé dans les processeurs pour améliorer l'efficacité en redi-
rigeant directement les résultats calculés vers les instructions suivantes qui en ont
besoin, sans attendre 1'écriture dans le registre.

I.3) MEMOIRE DE DONNEES

1.3.1) DESCRIPTIONS FONCTIONNELLES

La mémoire de données est utilisée pour stocker des informations temporaires né-
cessaires au fonctionnement d'un programme. Les opérations sur la mémoire de
données incluent la lecture des valeurs stockées a des adresses spécifiques et
I'écriture de nouvelles valeurs a ces adresses.

@(7:0) —»
IN(7-0) —> Mamoire

RW-—> des | ,ouT(70)
RST —»| données

CLK —»

Figure 5 Schéma fonctionnel Mémoire de données

@(7:0) : Adresse alaquelle les opérations de lecture ou écriture doivent étre effec-
tuées.

IN(7:0) : Entrée de données a écrire dans la mémoire a l'adresse spécifiée.

RW : Mode d'opération de la mémoire (0 pour lecture, 1 pour écriture).

RST : Entrée de réinitialisation de la mémoire.

CLK : Entrée de l'horloge servant a déclencher les opérations de la mémoire.
OUT(7:0) : Sortie renvoyant les données lues a partir de l'adresse spécifiée.

W

INSA

TOULOUSE

1.3.2) Simulation fonctionnelle

W OUT_data[7:0]
4 RST
8 [CLK

Figure 6 Simulation fonctionnelle Mémoire de données

Test 1 Ecriture de la donnée ff sur le registre
0

Test 2 Lecture de la donnée écrite sur le re-
gistre 0

Test 3 Ecriture de la donnée af sur le registre
1

Lecture du registre 1 puis le registre 0

Mise a 1 du reset

A chaque front montant de l'horloge (CLK), la mémoire réagit en fonction des si-
gnaux de contrble (RW) et de réinitialisation (RST). En cas de réinitialisation (RST a
1), la mémoire est remise a zéro. En mode écriture (RW a 1), les données d'entrée
(data) sont écrites a l'adresse spécifiée. En mode lecture (RW a 0), les données
situées a 'adresse spécifiée sont renvoyées via la sortie (OUT).

W

INSA

TOULOUSE

I.4) MEMOIRE D’'INSTRUCTION

I.4.1) DESCRIPTIONS FONCTIONNELLE

La mémoire d'instructions stocke la liste d'instructions machine qui composent le
programme exécuté par le processeur. Chaque instruction est associée a une
adresse mémoire spécifique. Chaque instruction est représentée sur 32 bits et est
accessible a une adresse spécifique dans la mémoire.

@(7:0) —
Meémoire
- des | »QUT(31:0)
instructions
CLK —»

Figure 7 Schéma fonctionnel Mémoire d'instructions

A [T :0] : Entrée représentant I'adresse a laquelle les opérations de lecture doivent
étre effectuées.

S [31 :0] : Sortie renvoyant l'instruction de 32 bits lue a partir de 'adresse spécifiée

I.4.2) Simulation fonctionnelle

Value

> MA[T:0] 05 ! 4 } 2 B]
8 clk 0
> W|S[31:0] 01030000

Figure 8 Simulation fonctionnelle Mémoire d'instructions

Test Ecriture de l'instruction dans le re-
gistre sélectionné par A[7:0] sur front
montant

A chaque front montant de 'horloge (clk), la mémoire réagit en renvoyant l'instruc-

tion située a l'adresse spécifiée via la sortie S.

INSA

TOULOUSE
1.5) GESTION DES ALEA

[.5.1) GESTION DESCRIPTIONS FONCTIONNELLE DES ALEA

On distingue les aléas de données et les aléas de branchement. Nous nous
intéresserons aux aléas de données. Un alea de donnée est un événement, cet
évenement est déclenché par au moins deux instructions s’exécutant de maniere
consécutive et de maniére incompatible. Une premiére instruction modifie la
valeur d’une donnée dans une zone mémoire, la seconde utilise cette zone
mémoire alors que la valeur n’a pas été mise a jour. Pour répondre a cette
problématique nous avons créé un nouveau composant dans notre chemin de
données, que vous pouvez voir ci-dessous en figure 9.

Mémoire | Méfmoire LI/DI DIVEX EX/Mem Mémoire Mem/RE
des instructions [LOP DIAOP EXAOP Banc de registres UAL — des données —
A A

OP +— OP +— OP

OUT}— IN

=11

oP

ouT =
—_— =] L -
B H@A QAH ™ H B l8{A Cul AluS | B | B |
|]
(cHeB oBl_{clB
IncrementPC L | @W w DATA L L)

Figure 9 Chemin de données avec gestion des aléas

Si le composant détecte que l'instruction envoyée par la mémoire d’instruction,
provoque un aléa avec une des instructions déja présentes dans le chemin de
données, alors il bloque la mémoire d’instruction et envoie des NOP dans le
chemin de donnée. Une fois ’aléa supprimé il envoie l'instruction bloquée et
débloque la mémoire d’instruction.

On peut souligner que la détection d’aléa se fera uniquement sur les 3 premiers
étages, en effet le banc registre contient un bypass qui permet de lire et d’écrire
en méme temps.

W

INSA

TOULOUSE

[.5.2) CONDITIONS DE DETECTION D’ALEA

Nous souhaitons avoir les conditions les plus général possible pour détecter nos
alea, cela évitera toute sorte d’ambigiiité et nous permettra de gérer simplement
tous les cas possibles. On peut commencer par les aléas provoqués par les

instructions MUL, SOU et ADD.

Opération Code Format d’instruction Description
0) A B C
Addition 0x01 |ADD |Ri |Rj |Rk |[Ri]< [Rj]+[RK]
Multiplication 0x02 MUL Ri Rj Rk [Ri] « [Rj] * [RK]
Soustraction 0x03 SOuU Ri Rj Rk [[Ri] « [Rj] - [RK]
Copie 0x05 cop Ri Rj _ [Ri] « [Rj]
Affectation 0x06 AFC Ri j _ [Ri] «j
Chargement 0x07 LOAD |Ri @ |_ [Ri] « [@j]
Sauvegarde 0x08 STORE | @i |Rj _ [@i] < [Rj]

Si l'instruction rentrante est _ alors zone B et C doivent étre
différentes des zones A des 3 instructions en cours d’exécution. On ne déclenche
pas d’alea sur les instructions en cours d’exécution qui seraient des STORE.

On peut maintenant poursuivre par les aléas provoquer par l'instructions COP et

STORE.

Opération Code Format d’instruction Description
OP A B C
Addition 0x01 ADD Ri Rj Rk | [Ri] « [Rj] + [RK]
Multiplication 0x02 MUL Ri Rj Rk | [Ri] « [Rj] * [Rk]
Soustraction 0x03 SOU Ri Rj Rk | [Ri] « [Rj] - [RK]
Copie 0x05 Ccop Ri Rj _ [Ri] < [Ry]
Affectation 0x06 AFC Ri J _ [Ri] «j
Chargement 0x07 LOAD |Ri @ |_ [Ri] « [@j]
Sauvegarde 0x08 STORE | @i |Rj _ [@i] < [Rj]

Sil'instruction rentrante est - ou - la zone B doit étre différente des zones
A des 3 instructions en cours d’exécution.

On peut souligner qu’une instruction rentrante de type AFC ou LOAD, ne peuvent
pas provoquer d’alea, et exerceront une influence uniquement si elles sont déja
présentes dans le chemin de données. On doit également détecter un alea
uniquement sur des instructions, il faut donc vérifier 'opcode pour ne pas

déclencher d’alea sur un NOP.

Note :(Nous conseillions de lire en priorité la

avant la partie 1.5.3)

W

INSA

TOULOUSE

1.5.3) SIMULATION FONCTIONNELLE DES ALEA

Un point a souligné est l'instruction NOP, en effet un NOP ne doit rien faire est
par cela on n’entend qu’il ne doit pas modifier un registre ou un espace mémoire,
il peut cependant rentrer dans ’alu, provoquer une lecture du banc de registre ou
de la mémoire. D’un point de vue extérieur, ces interactions ne provoquent pas de
comportement indésirable de la part du microprocesseur, cela étant il provoque
une consommation inutile.

[.5.3.1) ALEA SIMPLE (EXEMPLE : ADD)

Une premieére alea simple a percevoir, est une succession deux 2 AFC suivie d’une
addition des deux registres, cette situation est simulée dans le chronogramme ci-
dessous.

15.000 ns 20.000 ns

i | oso11200 | 00000000 || 08000000
| I [T I T ommr ':
4 UIIU0000 | 06001200 | 06011200 ooooooon ooooizoo | f 01022400 { 08001200 |
' 06001200 f o6oiizoo [oooooooo | 00001200 01022400
| | { - |

Figure 10 Simulation fonctionnelle alea exemple ADD
On envoie une premiére instruction « 06001200 » = RO<= 12 1
On envoie une seconde instruction « 06001200 » = R1<=12
On envoie une troisiéme instruction « 01020100 » =R2<=RI+R0 [___|

Evidement les registres RO et R1 ne sont pas a jour au moment de ’addition donc
une « bulle » (ici en jaune) est insérer, cette bulle est d’'une durée de 3 NOP.

W

INSA

TOULOUSE

[.5.3.2) ALEA COMPLEXE (EXEMPLE : COP)

Un second exemple d’alea, est un alea entrainé par deux instructions non succes-
sives, cette situation est simulée dans le chronogramme ci-dessous.

(40,000 ns (25.000 ns 50.000 ns 55.000 ns 60.000 ns 65.000 ns 70.000 ns 75.000 ns q
] : |] :

01030000 05040000 X ooooopon | | 05040300 00000000

T oo I [owoo | ez |
01052200 T R | I YT R ST 00001200
01022200 08001200 1 01032400 05041200 } 1 05042400
|

Figure 11 Simulation fonctionnelle alea exemple COP

On envoie une premiére instruction « 01030000 » = R3<=R0+R0 [|
On envoie une seconde instruction « 05040000 » = R4<=R5
On envoie une troisiéme instruction « 05040300 » = R4<= R3 1

Ici ’alea est entre la troisiéme et la premiére instruction, la bulle(ici en jaune) est
équivalente a 2 NOP. On constate a travers cette situation que le nombre de NOP
s’adapte en fonction de la distance séparant les aléas.

[.5.3.3) ALEA COMPLEMENTAIRE (EXEMPLE : STORE)

Enfin on peut observer un dernier exemple d’alea, c’est un alea entrainé par deux
instructions non successives, cette situation est simulée dans le chronogramme ci-
dessous.

00000000

00001212 03022412 06011212 00001212 09021212 00001212
00001200 [05051200 06011200 b 00001200 08021200 00001200

Figure 12 Simulation fonctionnelle alea exemple Store
On envoie une premiére instruction « 05050100 » = R5<=R1 1
On envoie une seconde instruction « 06001200 » = R0<=12
On envoie une troisiéme instruction « 06001200 » = R0<= 12
On envoie une quatriéme instruction « 08020500 »= @02 <=RS5 E

Ici I’aléa est entre la quatriéme et premiere instruction la bulle(ici en jaune) est
équivalente a 1 NOP. On constate a travers cette situation que le nombre de NOP
s’adapte en fonction de la distance séparant les aléas et que nous avons traiter tous

les cas possibles.

INSA

TOULOUSE

1.5.4) /! \NOTE SUR LES CHRONOGRAMMES DES SIMULATIONS

On ne peut pas présenter un test qui soit exhaustif sur les aléas, cela serait trop
long. Nous avons donc choisi de vous présenter trois cas possibles, ils illustrent les
différentes conditions d’un alea. En parcourant la simulations compléte du proces-
seur vous trouverez les autres cas d’aléas.

Si on observe attentivement les simulations un détail surprenant apparait. En
effet, sur les simulations il semble que I’étage 2 soit décalé des autres étages, ce
qui est en contradiction avec un fonctionnement pipeline. En réalité il s’agit d’'un
faux décalage, sur les simulations précédentes on observe l'entrée des buffers
mais la transmission se fait en sortie sur une clock qui est mutualisée. Un moyen
simple de le vérifier est de regarder I'une des sorties des MUXS.

Figure 13 Simulation du Pipeline

L’effet pipeline est bien nominale, seul le compteur PC (ici nommée choix_num)
est décalé cela ne pose évidemment pas de soucis et cela sera explicité dans la
partie 3 de ce rapport.

W

INSA

TOULOUSE
II) IMPLEMENTATION DU MICROPROCESSEUR RISC

II.1) CHOIX D'IMPLEMENTATION

Nous aurions pu implémenter nos composants et les faires fonctionner de diffé-
rentes manieres. Pour les composants nous nous sommes contentés de les conce-
voir celons les indications du sujet. Pour le chemin de donnes nous avons décidé
d’implanter les 4 MUX délimitant les étages du pipeline sous forme de composant.
Les composants discrets type LC et simple MUX ont été implémentés de maniére
concurrente directement dans le chemin de données. Nous pensons que malgre la
perte de lisibilité, cela accroit les performances de notre microprocesseur.

I1.2) CHOIX D’AMELIORATION ANALYSE

I1.2.1) AXE D’AMELIORATION

A la fin du projet plusieurs possibilités s’offrent a nous, on peut améliorer notre
processeur.

Pour cela différentes opportunités se présentent a nous, le premier est de complé-
ter notre jeu d’instruction notamment en ajourant des fonctions telles que le OU
logique, ET logique ect. Ces fonctions sont déja intégrées dans notre ALU, il fau-
drait donc modifier notre chemin de données et notre gestion des aléas.

Un autre axe d’amélioration est I’ajout d’instruction de type saut et saut condi-
tionné. Cet axe est intéressant car il permet de réaliser des algorithmes plus com-
plexes.

Un quatriéme axe d’amélioration est de réduire aux maximum la consommation de
notre microprocesseur et sa superficie.

Enfin un dernier axe possible est I’optimisation du systéme pour augmenter sa fré-
quence de fonctionnement. Il s’agit du choix que nous avons décidé de faire, il est
purement arbitraire.

W

INSA

TOULOUSE

I1.2.2) ANNALYSE FREQUENTIELLE ET CHEMIN CRITIQUE

Notre premiere rapport Timming nous indique une fréquence une fréquence MAX
de 656MHz, ce résultat ne nous satisfait évidemment pas.

Setup Hold Pulse Width
Worst Negative Slack (WNS): 4,762 ns Worst Hold Slack (WHS): 0,030 ns Worst Pulse Width Slack (WPWS): 9,500 ns
Total Negative Slack (TNS): 0,000 ns Total Hold Slack (THS): 0,000 ns Total Pulse Width Negative Slack (TPWS): 0,000 ns
Mumber of Failing Endpoints: 0 MNumber of Failing Endpoints: 0 Number of Failing Endpoints: 0
Total Number of Endpoints: 2116 Total Number of Endpoints: 2116 Total Number of Endpoints: 1099

All user specified timing constraints are met.
Figure 14 Rapport Timming
On pourrait penser que la gestion des aléas sur front descendant diminue notre

fréquence max, cependant le chemin critique nous indique que nous devrions nous

pencher sur nos mémoires.

Apres avoir optimisé notre chemin de mémoire, nous avons un schématique d’im-
plémentation plus claire :

[
ki

Wi

i
- LJI_‘JL_H_‘_H__]LJLJ

Figure 15 Schématique TOP

W

INSA

TOULOUSE

Cependant notre fréquence n’est pas plus importante, on regarde donc de nouveau
notre chemin critique :

Max Delay Faths

slack (MET) 4.,44Zns (regquired time - arrival time)

Source:

Destination:

Fath Group:
Path Type:

MEMOIR_INSTRUCTION/OUT_instru_reg[B]/c

(rising edge-triggered cell FDRE clocked by CLRKTOP [rise@0.000ns f£all@l0.000ns period=20.000ns})
choix num reg[&]/R

(falling edge-triggered cell FDRE clocked by CLKTOPR
CLETOF

{rise@0.000ns £all@10.000ns perieod=20.000ns})

Setup (Max at Slow Process Corner)

Requirement: 10.000ns (CLKTOP £all@10.000ns - CLETOP rise@0.000ns)
Data Path Delay: 4,97%n3 {logic 1.090ns (Z1.890%) route 3.88%ns (72.110%))
Togic Levels: 4 (LUT&=4)
2laock Path Skew: -0.024ns (DCD - &CD + CPR)

Destination Clock Delay (DCD): 5.078ns = (15.078 - 10.000)

dource Clock Delay (3CD): 5.38%ns

“lock Pessimism Remowval (CPR): 0.ZB86ns
Clock Uncertainty: 0.035ns ¢ (TEJ"2 + TIJ*Z)™1/2 + DJ) / 2 + PE

Total System Jitter (Tad): 0.071lns

Total Input Jitter (TIT): 0.000ns

Discrete Jitter (DT : 0.000ns

Phase Error (EE): 0.000ns

Location Delay type Incrins) Pathins) Netlist Resource(s)

Malgré nos efforts nous n’avons pas réussi a diminuer les temps de propagation a
travers ce chemin.

I1.3) PERFORMANCE

IT11.3.1) CONSOMMATION ENERGETIQUE

Bien que nos modifications n’aient pas permis d’augmenter la fréquence la con-
sommation énergétique a fortement diminué. La diminution est de I’ordre de 175%.
Vous trouverez ci-dessous le rapport récapitulatif de puissance.

Summary

Power analysis from Implemented netlist. Activity On-Chip Power

derived from constraints files, simulation files or

vectorless analysis. % Dynamic: 0005w (7
Total On-Chip Power: 0.079 W]:Z’,Z Clocks: 0.001W (14%)
Design Power Budget: Not Specified Signals: 0.001W (117
Process: typica 93% — Logic: <0.001W
Power Budget Margin: N/A I/0: 0.004 W
Junction Temperature: 25,4°C Device Static: 0074 W

Thermal Margin: 59,6°C (11,9 W)

Ambient Temperature: 25.0°C

Effective GJA: 5.0°C/W

Power supplied to off-chip devices: 0W

Confidence level: Medium

Launch Power Constraint Advisor to find and fix
invalid switching activity

W

INSA

TOULOUSE

I11.3.2) COMPOSANTS

Notre consommation est intrinseéquement liée a notre fréquence et a notre nombre
de composants. Vous trouverez ci-dessous, des extraits de rapport indiquant les
différents composant utilisés pour notre projet et en quelles proportions.

B et it Fo—mm tommm o B ettt Fommmmmm o Fomm +
| dite Type | Used | Fixed | Prohibited | Awvailable | Util% |
B et it Fo—mm tommm o B ettt Fommmmmm o Fomm +
8lice TUTs*	159	o	zosoo	0.76	
LUT as Logie	159	o	z0800	0.76	
LUT as Memory	oo 0o	oo Se00	0,00		
Slice Registers	160	o	41600	0.38	
Reglster as Flip Flop	160	o	o	41400	0.38
Register as Latch	o	o	o	41600	o.o00
F7 Muxes	o o	16300	0.00		
F& Muxes	o	o	o	8150	0.00
e PR [P . P [P 4					
o - T e tmm - +					
8ite Type	Used	Fixed	Prohibited	Awvailable	Util%
o - T e tmm - +					
BUFECTRL	1	o o 32	3.13		
BUFIO	o o o	20	0.00		
MMCMEZ ADV	o o o 5	0.00			
PLLEZ_ADV	o o o 5	0.00			
BUFMRCZE	o o o 10	o0.00			
BUFHCE	o o o 72 1 0.00				
BUFR	o o o 20	0.00			
o R R o o R +					
B B R ittt e P +					
Ref Name	Used	Functional Category			
e o o +					
FDRE	1a0	Flop & Latch			
LUTe	g4	LUT			
LUT4	34	LUT			
LuTZ	34	LUT			
LUTS	25	LUT			
CARRYY	2 CarryLogic				
CBUF	g8	Io			
LUz [6	LUT				
LUTl	2 LUT				
IBUF	1] Io				
BUF&	1] Claock				
B Fm———— e +

W

INSA

TOULOUSE

CONCLUSION

Le projet a été tres intéressant a réaliser, la découverte du logiciel Vivado a
été instructive pour nous qui n’avions travaillé que sur Qartus. Ce projet nous a
également permis d’appliquer de maniére concrete les différentes notions vues en
cours de modélisation des composants et architectures numériques.

Nous avons rencontré de nombreuses difficultés, notamment lors de la
tentative d’optimisation des chemins critiques, et nous ne sommes finalement pas
parvenus a nos fins. Malgré cet échec nous sommes satisfaits de notre gestions des
aléas. De plus, la démarche nous a permis d’aller plus loin dans I'utilisation des
différents outils proposés par Vivado, et sur la conception Vhdl de fagon générale.

Les connaissances et la compréhension de Iarchitecture d’un
microprocesseur nous sont également utiles, on peut qualifier ces connaissances
de compétences transversales.

W

