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Section 1

Neural Networks
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The Perceptron

Given an input xT =
[
x1 · · · xn

]
, we define a perceptron with the (synaptic)

weights wT =
[
w1 · · · wn

]
and bias w0 to compute the output hw (x) as

hw (x) = g(w0 +
n∑

i=1

wixi) (1)

Hypothesis space : linear functions, Loss L2-loss (e.g.)
Training : gradient descent updates w ← w − α× ~∇Loss(w)
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N.B. : some NN can feed their output (or intermediate results) back into their
inputs =⇒ Recurrent Neural Networks (RNN).
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Neural Networks
Common activation functions

I logistic or sigmoid function

σ(z) = 1
1 + e−z

I the rectified linear unit function (ReLu)

ReLU(z) = max(0, z)

I the softplus function

softplus(z) = log(1 + ez)

I the tanh function

tanh(z) = e2z − 1
e2z + 1
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Neural Networks
Training ?

Still use gradient descent : w ← w − α× ~∇Loss(w), but how to compute the
gradients ?

Output layer :
∂Loss(w)

∂w3,5
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.

∂in5
∂w3,5

Hidden layer :
∂Loss(w)

∂w1,3
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.
∂in5
∂a3

.
∂a3
∂in3

.
∂in3

∂w1,3
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Neural Networks
Training ?

Still use gradient descent :w  w � � � ~r Loss(w), but how to compute the
gradients ?Use the chain rule ! Recursively ! Down to simplest operations !

Output layer :

@Loss(w)

@w3;5
=

@Loss(w)

@̂y
:

@̂y

@in5
:

@in5

@w3;5

Hidden layer :

@Loss(w)

@w1;3
=

@Loss(w)

@̂y
:

@̂y

@in5
:
@in5

@a3
:

@a3

@in3
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@in3

@w1;3
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Neural Networks

Network  neural network with
initial weights
while not convergeddo

Backprop-Iter (E, Network)

https://playground.tensorflow.org/
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Neural Networks

Network  neural network with
initial weights
while not convergeddo

Backprop-Iter (E, Network)

Problem :

I slow, requires the derivatives
I gradient computation is costly

and increases with
I number of weight
I number of examples

=) O(jwj � j Ej)
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Neural Networks

Network  neural network with
initial weights
while not convergeddo

Backprop-Iter (E, Network)

Problem :

I slow, requires the derivatives
I gradient computation is costly

and increases with
I number of weight
I number of examples

=) O(jwj � j Ej)

Solution : (Stochastic/mini-batch
gradient descent) :
select a small subset of example on
which to propagate the error

Network  neural network with
initial weights
while not convergeddo

MiniBatch  sample(E; k)
Backprop-Iter (MiniBatch,

Network)
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Stopping criterion

Error on training set (blue) and
test set (red)

Problem :

I training tend to over�t the data

I we cannot touch the test data

Solution :

I stop when performance decreases on the
validation set,

I do not use validation set for training !
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Section 2

Convolutional Neural Networks
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Subsection 1

Motivation
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