
Machine Learning 2 – 5A
Convolutional Neural Networks

Team: E. Chanthery, M.-V. Le Lann, P. Leleux, M.
Siala

Section 1

Neural Networks

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 2/41

The Perceptron

Given an input xT =
[
x1 · · · xn

]
, we define a perceptron with the (synaptic)

weights wT =
[
w1 · · · wn

]
and bias w0 to compute the output hw (x) as

hw (x) = g(w0 +
n∑

i=1

wixi) (1)

Hypothesis space : linear functions, Loss L2-loss (e.g.)
Training : gradient descent updates w ← w − α× ~∇Loss(w)

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 3/41

From one

x1

x2

x3

ŷ

Perceptron

x1

x2

x3

ŷ

Multilayer perceptron

Hidden
layer

Input
layer

Output
layer

N.B. : some NN can feed their output (or intermediate results) back into their
inputs =⇒ Recurrent Neural Networks (RNN).

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 4/41

From one to multi-layers perceptron

x1

x2

x3

ŷ

Perceptron

x1

x2

x3

ŷ

Multilayer perceptron

Hidden
layer

Input
layer

Output
layer

N.B. : some NN can feed their output (or intermediate results) back into their
inputs =⇒ Recurrent Neural Networks (RNN).

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 4/41

Neural Networks
Common activation functions

I logistic or sigmoid function

σ(z) = 1
1 + e−z

I the rectified linear unit function (ReLu)

ReLU(z) = max(0, z)

I the softplus function

softplus(z) = log(1 + ez)

I the tanh function

tanh(z) = e2z − 1
e2z + 1

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 5/41

Neural Networks
Training ?

Still use gradient descent : w ← w − α× ~∇Loss(w), but how to compute the
gradients ?

Output layer :
∂Loss(w)

∂w3,5
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.

∂in5
∂w3,5

Hidden layer :
∂Loss(w)

∂w1,3
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.
∂in5
∂a3

.
∂a3
∂in3

.
∂in3

∂w1,3

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 6/41

Neural Networks
Training ?

Still use gradient descent : w ← w − α× ~∇Loss(w), but how to compute the
gradients ? Use the chain rule !

Output layer :
∂Loss(w)

∂w3,5
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.

∂in5
∂w3,5

Hidden layer :
∂Loss(w)

∂w1,3
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.
∂in5
∂a3

.
∂a3
∂in3

.
∂in3

∂w1,3

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 6/41

Neural Networks
Training ?

Still use gradient descent : w ← w − α× ~∇Loss(w), but how to compute the
gradients ? Use the chain rule ! Recursively !

Output layer :
∂Loss(w)

∂w3,5
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.

∂in5
∂w3,5

Hidden layer :
∂Loss(w)

∂w1,3
=

∂Loss(w)
∂ŷ

.
∂ŷ

∂in5
.
∂in5
∂a3

.
∂a3
∂in3

.
∂in3

∂w1,3

P. Leleux Machine Learning 2 – 5A – Convolutional Neural Networks 6/41

Neural Networks
Training ?

Still use gradient descent :w w � � � ~r Loss(w), but how to compute the
gradients ?Use the chain rule ! Recursively ! Down to simplest operations !

Output layer :

@Loss(w)

@w3;5
=

@Loss(w)

@̂y
:

@̂y

@in5
:

@in5

@w3;5

Hidden layer :

@Loss(w)

@w1;3
=

@Loss(w)

@̂y
:

@̂y

@in5
:
@in5

@a3
:

@a3

@in3
:

@in3

@w1;3

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 6/41

Neural Networks

Network neural network with
initial weights
while not convergeddo

Backprop-Iter (E, Network)

https://playground.tensorflow.org/

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 7/41

Neural Networks

Network neural network with
initial weights
while not convergeddo

Backprop-Iter (E, Network)

Problem :

I slow, requires the derivatives
I gradient computation is costly

and increases with
I number of weight
I number of examples

=) O(jwj � j Ej)

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 7/41

Neural Networks

Network neural network with
initial weights
while not convergeddo

Backprop-Iter (E, Network)

Problem :

I slow, requires the derivatives
I gradient computation is costly

and increases with
I number of weight
I number of examples

=) O(jwj � j Ej)

Solution : (Stochastic/mini-batch
gradient descent) :
select a small subset of example on
which to propagate the error

Network neural network with
initial weights
while not convergeddo

MiniBatch sample(E; k)
Backprop-Iter (MiniBatch,

Network)

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 7/41

Stopping criterion

Error on training set (blue) and
test set (red)

Problem :

I training tend to over�t the data

I we cannot touch the test data

Solution :

I stop when performance decreases on the
validation set,

I do not use validation set for training !

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 8/41

Stopping criterion

Error on training set (blue) and
test set (red)

Problem :

I training tend to over�t the data
I we cannot touch the test data

Solution :

I stop when performance decreases on the
validation set,

I do not use validation set for training !

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 8/41

Stopping criterion

Error on training set (blue) and
test set (red)

Problem :

I training tend to over�t the data
I we cannot touch the test data

Solution :

I stop when performance decreases on the
validation set,

I do not use validation set for training !

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 8/41

Section 2

Convolutional Neural Networks

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 9/41

Subsection 1

Motivation

P. Leleux Machine Learning 2 � 5A � Convolutional Neural Networks 10/41

	Neural Networks
	Convolutional Neural Networks
	Motivation
	Convolution layers
	Convolution mechanisms
	Convolutional architectures
	Interpretation of convolution filters

	Conclusion

