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From factorial methods to inferential methods

Previously...

Traditional machine learning workflow
Data description/preprocessing methods :

I Qualitative data,
I Quantitative data,
I Time series/Sequential data.
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From factorial methods to inferential methods

Motivation

Traditional machine learning workflow
These geometric representations of data allow the use of the vectorial space
notions :

I define distances between individuals/variables,

I weight the influence of individuals/variables,

I identify groups (aggregation/clusters),

I identify dependency relations/links between individuals/variables.

&
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From factorial methods to inferential methods
Motivation

Réduction

Données —®  de
dimension

Prédiction Validation

Traditional machine learning workflow

These geometric representations of data allow the use of the vectorial space
notions :

I define distances between individuals/variables,

I weight the influence of individuals/variables,

I identify groups (aggregation/clusters),

I identify dependency relations/links between individuals/variables.
[CInfkrential methods
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Classification

Supervised learning

There exist 2 types of classification :
I If we have a training basis, with labelled data

X Xt . XXM Classe
1

i | Caractéristiques variables | S variables nominales

Supervised classification :

With the training basis, we can choose or learn a decision model which explains
the relations between input features and the output class.
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Classification
Unupervised learning

I If we do not have a training basis, the unsupervised classification non
supervisée should be preferred.

Figure — Example of unsupervised classification : divide the dataset in 4 classes using
the distance between points.

Unsupervised classification

Goal : create a partitioning (set of classes) of a dataset using similarity measures
between the data points such that the data points belonging to a specific class
are as similar as possible, and the data from di[erknt classes are as dissimilar as ..

possible.
P.

- — ing.time.series.
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Section 1

k-Nearest Neighbors
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k-Nearest Neighbors (k-NN)

The example problem

1 111
Let’s consider the dataset D = Diql),yl %m),ym with

I x® [CRI data points (represented in 2D),
I y; [{1,...,K} the output labeled in K classes.
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k-Nearest Neighbors (k-NN)

Principle

_ oy, O o, 0o
Let’s consider the dataset D = (X,y) = x®,y1 ..., x™,yn  with

x® [RF data points,
I y; [{1,...,K} the output labeled in K classes.

Algorithm k-NN algorithm

Input : new data point x

Compute distances to points in dataset
Find 5 nearest points

Determine the most represented class k
Assign class k to new point x

nnnnnnnn

P. Leleux ; Machine Learning 2 — 5A — Handling time series 6/23



NSTIUT HATIONAL
DES SCIENCES
APPLIQUEES
TOULOUSE

INSA

k-Nearest Neighbors (k-NN)

The example problem : application

Results depend on the choice of k...
k=1 : class red

k=2 : class undetermined

k=3 : class red

k=4 : class undetermined

k=5 : class red
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k-Nearest Neighbors (k-NN)

The example problem : application

Results depend on the choice of k... but also on the measure of similarity!
k=1 : class red

k=2 : class undetermined

k=3 : class red

k=4 : class undetermined

k=5 : class red
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k-Nearest Neighbors (k-NN)

Pros and cons

I Advantages :
I Simplicity
I No training phase

I Adaptability to local patterns : k-NN can capture complex
patterns in the data, even with non-linear boundaries (e.g.
identification of written numbers, satellite images)

I' No sensitivity to outliers during Training
I Disadvantages :

I Can be expensive : need to compute (n?) distances and store all
data points,

I Sensitive to non-pertinent and correlated features,
I Sensitive to outliers during Testing,
I Parameter : distance.

P. Leleux ; Machine Learning 2 — 5A — Handling time series 8/23




<

INSTITUT NATIONAL
DES SCIENCES
APPLIQUEES
TOULOUSE

INSA

k-Nearest Neighbors (k-NN)

Mesure of similarity ?

Let's use a distance :
I Euclidian distance : d(u,v) = iui —vj)?
i=1
I' Manhattan distance : d(u,v) = iui — Vil

I Minkowski distance : dq(u,v) = ¢ iui —v;[d
i=1
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