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Data collection and representation
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Types

What types of data in this lecture ? Can be anything

1.

Quantitative and qualitative data : typically metadata of devices,

2. Time series (lecture 3) : data collected by sensors (e.g. accelerometers)
3. Audio (e.g. from smartphone mic)

4.

5. Others : Video, logs, network data, etc.

Image (lecture 4) (e.g. medical imagery)

Record
. . Feature Numb: ]
Representation ? arrays / matrices of [ e
integers / floating point numbers [ Feaire Time Series]
[ Feature Image ]
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Data

Representation : quantitative features
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Representation : quantitative features
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Representation : qualitative features

yeux/cheveux marron noisette vert bleu Profil moyen

brun 11 3 1 3 18
chatain 20 9 5 14 48
roux 4 2 2 3 12
blond 1 2 3 16 21
profil moyen 37 16 11 36 100

Table — Transformation of the contingency table
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Data

Representation : qualitative features

Tableau de contingence K
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Representation : qualitative features (generalisation

| || bacC bacD | < 18 18ans 19ans > 19 | 2ans 3Jans d4ans

bacC 583 0 108 323 114 38| 324 192 67
bacD 0 214 25 97 68 24 76 82 56
< 18 108 25 133 0 0 0 84 35 14
18ans 323 97 0 420 0 0| 224 137 59
19ans 114 68 0 0 182 0 73 5 34
> 19 38 24 0 0 0 62 19 27 16
2ans 324 76 84 224 73 19 | 400 0 0
3ans 192 32 35 137 75 27 0 274 0
4ans 67 56 14 59 34 16 0 0 123
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Data
Representation : temporal series
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Towards factorial and classification methods

What happens when the feature space has a high dimension ?

configuration du nuage
de points dans l'espace

visualisation dans regroupements dans
le meilleur espace réduit tout I'espace
(méthodes factorielles, chapitre T ) (méthodes de classification, chapitre 2 )
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Issues = [ FEehture engineering

In your opinion, what are possible issues with data in embedded Al for 10T ?

P. Leleux ; Machine Learning 2 — 5A — Data preprocessing

Data privacy ?

Data transmission ?

Data labeling ?

Real-time data processing ?
Heterogeneous data integration ?
Scalability Issues?

Bias and ethical concerns?

Data quality and variety ?

Limited storage and computation ?
Real-time data capture ?

Energy E Lciehcy Concerns ?
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Data

Issues = [ FEehture engineering

In your opinion, what are possible issues with data in embedded Al for 10T ?

I Data privacy ? access/use can be 1 Data quality and variety ? real-world
problematic = noisy, incomplete, inconsistent

1 BUT potentially better model

I Data labeling? can be inaccurate I Limited storage and computation ?

I Real-time data processing ? expensive "curse of dimensionality™ + model

I Heterogeneous data integration ? complexity
Techniques to ensure capability #paramP x (#samples x< #features)?

I Scalability Issues? Growing number 1

of 10T devices

I Bias and ethical concerns? data can
be biased and lead to 1
unfair/unethical model

Issues : low quality, large amounts + + ethics
Solutions : data cleaning, dimension reduction + + out-of-scope
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Data cleaning
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Data cleaning

Transformation of data to quantitative features

Most machine learning techniques are designed to handle quantitative data! All
types of data can be transformed into it :

1. Qualitative :
I To integers : Eyes = {blue, brown, green} = FEyks = {0,1,2}
I To binary : Eyes = {blue, brown, green} = [Blille_eyes =
{0, 1}, Brown_eyes = {0, 1}, Green_eyes = {0, 1}
Temporal series : array of floats
Image : matrix of integers/floats
Video : tensor of integers/floats

ok~ w DN

Text ? Tokenizing

Else, it is possible to build a machine learning model for each type of data then
assemble the results : Ensemble Learning (Lecture 6) oy
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