Introduc-

wo usefu

TASIA

Markovian

dileties

M/M/1/K

M/M/C

M/M/C/

Network

of queue

description

arrival rate

analysis

Queueing Theory

Balakrishna Prabhu

Markovia queues

M/M/1 M/M/1/1 M/M/C

Networ of queu

Model description Effective arrival rate

analysis Example 4.1 Introduction

4.2 Two useful results

PASTA Little's law

4.3 Markovian queues

M/M/1 M/M/1/K M/M/C M/M/C/C

4.4 Networks of queues

Model description Effective arrival rate Performace analysis Example

Introduction

M/M/C/C

4.1 Introduction

Introduction

Two usefuresults

Markovia

queues M/M/1 M/M/1/K

M/M/C M/M/C/

Network of queue

description Effective

arrival rat

Example

Introduction

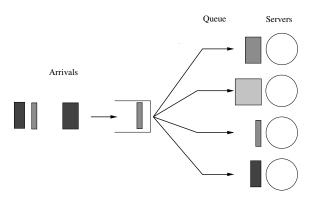


Figure: Servers with a common queue

Examples: airports, post-office, call centers. . .

Introduction

Two useforesults
PASTA

Markovia

queues M/M/1 M/M/1/K

M/M/C M/M/C/

Network of queue

description Effective

Performac

niu

Introduction

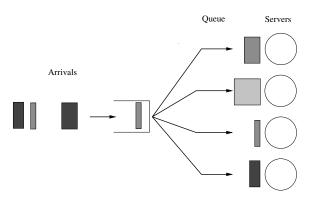


Figure: Servers with a common queue

Examples:supermarkets, data centers, . . .

Introduction

Modelling a queue

Objective

Compute performance metrics: mean sojourn time, probability of waiting, etc.

Introduction

PASTA

Markovia queues

queues M/M/1

M/M/C

M/M/C/

of queue Model description

Effective arrival rat

analysis

Modelling a queue

Objective

Compute performance metrics: mean sojourn time, probability of waiting, etc.

Introduction

results
PASTA
Little's lay

Markovia queues

M/M/1/I M/M/C

M/M/C/ Network

Model description Effective arrival ra

analysis

Modelling a queue

Objective

 $Compute\ performance\ metrics:\ mean\ sojourn\ time,\ probability\ of\ waiting,\ etc.$

Which parameters influence the most the performance of a queueing system?

Arrival process (A)

Introduction

results
PASTA
Little's la

Markovia

M/M/1 M/M/1/l

M/M/C M/M/C/0

of queue Model

descriptio Effective arrival rat

analysis Example

Modelling a queue

Objective

 $Compute\ performance\ metrics:\ mean\ sojourn\ time,\ probability\ of\ waiting,\ etc.$

- Arrival process (A)
- Service time distribution (S)

Introduction

results
PASTA
Little's la

Markovia

M/M/1 M/M/1/2 M/M/C

M/M/C/ M/M/C/

of queue Model

Effective arrival ra

analysis Example

Modelling a queue

Objective

Compute performance metrics: mean sojourn time, probability of waiting, etc.

- · Arrival process (A)
- Service time distribution (S)
- Number of servers (P)

Introduction

results
PASTA
Little's la

Markovia queues

M/M/1 M/M/1/1 M/M/C M/M/C/

Networks of queues

description Effective arrival rat

analysis

Modelling a queue

Objective

Compute performance metrics: mean sojourn time, probability of waiting, etc.

- Arrival process (A)
- Service time distribution (S)
- Number of servers (P)
- System capacity (K)
- Service discipline (D)

Introduction

M/M/1/K

M/M/C

Kendall Notation

Kendall Notation

Introduction

Two usefu results

Little/e li

Markovia

queues

M/M/1/K M/M/C

M/M/C/

Network of queue

> description Effective

arrival rate Performac

analysis

Kendall Notation

Kendall Notation

Introduction

Two usef results

PASTA Little's la

Markovia

queues M/M/1

M/M/1/I M/M/C M/M/C/

Network of queue

descriptio Effective arrival rat

analysis

Kendall Notation

Kendall Notation

A/S/P/K/D

 A can take values: M (Poisson process, Markovian), D (deterministic), G (general),...

Introduction

Two usef

PASTA Little's la

Markovia queues

M/M/1 M/M/1/2 M/M/C M/M/C/

Network of queue

Model descriptio Effective arrival rat

analysis Evample

Kendall Notation

Kendall Notation

- A can take values: M (Poisson process, Markovian), D (deterministic), G (general),...
- S can take values: M (exponential), D (deterministic), G (general),...

Introduction

Two usef

Markovi

queues M/M/1 M/M/1/F

M/M/C M/M/C/

Network of queue

descriptio Effective arrival rat

analysis Example

Kendall Notation

Kendall Notation

- A can take values: M (Poisson process, Markovian), D (deterministic), G (general),...
- S can take values: M (exponential), D (deterministic), G (general),...
- P is an integer ≥ 1

Kendall Notation

Kendall Notation

- A can take values: M (Poisson process, Markovian), D (deterministic), G (general),...
- S can take values: M (exponential), D (deterministic), G (general),...
- P is an integer ≥ 1
- K is an integer ≥ 1;
 - default value is ∞
- D can be: FIFO, LIFO, PS (Processor Sharing), Priority
 - · default value is FIFO

Introduction

M/M/1/K

M/M/C

Kendall Notation

Example

Poisson Arrivals

Task-sizes are exponentially distributed

Introduction

> Two usefu results

PASTA Little's la

Markovia

queues

M/M/1/K

M/M/C

M/M/C

Networ of queu

Model description

Effective arrival rat

analysis

Kendall Notation

Example

Poisson Arrivals

Task-sizes are exponentially distributed

M/M/1

Introduc-

Two useful results

PASTA

Little's lav

Markovian

queues

M /M /1

M/M/1/K

M/M/C M/M/C/C

Network

of queue

Model

description

arrival rate

Performace

Example

4.2 Two useful results

Introduction

Two usef

PASTA

. . . .

duenes

queues

M/M/1/K

M/M/C

Network

of queue

description

arrival rat

analysis

PASTA property

• Two different views of the performance measures

Introduction

> Two usefi esults

PASTA

N. Carolina and Caro

Markovia

queues

M/M/1/K

M/M/C

Networl

of queue

descriptio Effective

arrival rat

analysis

PASTA property

- Two different views of the performance measures
 - Time average vs Customer average

Introduction

> Two usefi esults

PASTA

Markovia

diferies

queues

M/M/1/

M/M/C

Networl

of queue

description

arrival rat

analysis

PASTA property

- Two different views of the performance measures
 - Time average vs Customer average
 - Not necessarily the same

Introduc tion

Two usef results

PASTA Little's la

Markovia queues

queues M/M/1

M/M/C M/M/C/

Network of queu

descriptio

Effective

Performa analysis

PASTA property

- Two different views of the performance measures
 - Time average vs Customer average
 - Not necessarily the same

Example

D/D/1 queue: arrival every 2 seconds, service time is 1 second.

Introduc

Two usef results

PASTA Little's la

Markovia queues

queues M/M/1 M/M/1/l

M/M/C M/M/C/

of queu Model

description Effective arrival rat

analysis

PASTA property

- Two different views of the performance measures
 - Time average vs Customer average
 - Not necessarily the same

Example

D/D/1 queue: arrival every 2 seconds, service time is 1 second.

Time average

Fraction of time the queue is empty

Customer average

Fraction of customers who see the queue empty

Introduc

Two used results

PASTA

Markovi

queues M/M/1

M/M/1/ M/M/C M/M/C/

Network of queu

description Effective arrival ra

Perform

PASTA property

- Two different views of the performance measures
 - Time average vs Customer average
 - Not necessarily the same

Example

D/D/1 queue: arrival every 2 seconds, service time is 1 second.

Time average

Fraction of time the queue is empty = 0.5

Customer average

Fraction of customers who see the queue empty

tion

results
PASTA

Little's la

Markovia queues M/M/1

M/M/1/I M/M/C M/M/C/

of queu Model

descriptio Effective arrival rat

analysis Example

PASTA property

- Two different views of the performance measures
 - Time average vs Customer average
 - Not necessarily the same

Example

D/D/1 queue: arrival every 2 seconds, service time is 1 second.

Time average

Customer average

Fraction of time the queue is empty = 0.5

Fraction of customers who see the queue empty= 1

In general, Time average \neq Customer average

tion

Two use results

PASTA Little's la

Markoviai queues M/M/1

M/M/C M/M/C

of queu Model descript

Performa analysis Example PASTA property

Two different views of the performance measures

- Time average vs Customer average
- Not necessarily the same

Example

D/D/1 queue: arrival every 2 seconds, service time is 1 second.

Time average

Customer average

Fraction of time the queue is empty = 0.5

Fraction of customers who see the queue empty= 1

In general, Time average \neq Customer average

B11t...

PASTA (Poisson Arrivals See Time Averages) property

For Poisson arrivals, Time average = Customer average.

Introduc

Two use results

Little's law

Markovia queues

M/M/1/ M/M/C

M/M/C M/M/C

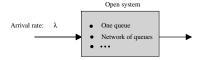
of queu Model descript

Effective arrival rat

Example

Little's law

- Sojourn times are real valued and cannot be modeled as Markov chains
- Little's law gives the relationship between the mean number in the system and the mean sojourn time



Perform

Little's law

- Sojourn times are real valued and cannot be modeled as Markov chains
- Little's law gives the relationship between the mean number in the system and the mean sojourn time



Little's law

$$\bar{T} = \frac{\bar{N}}{\lambda} \tag{1}$$

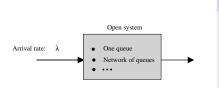
 \bar{T} : mean sojourn time

 $ar{N}:$ mean number in the system

 λ : arrival rate

Little's law

- Sojourn times are real valued and cannot be modeled as Markov chains
- Little's law gives the relationship between the mean number in the system and the mean sojourn time



Little's law

$$\bar{T} = \frac{\bar{N}}{\lambda} \tag{1}$$

 \bar{T} : mean sojourn time

 $ar{N}:$ mean number in the system

 λ : arrival rate

Observation

Valid under very weak assumptions on arrivals and services times. E.g., does not require Poisson arrivals or exponential service times

Introduc

Two usefu esults

Little's law

Markovia

M/M/1

M/M/C M/M/C/0

M/M/C/

of queue

description Effective

Performa

Example

Recipe for analysing queues

1. Use Continuous Time Markov Chains (CTMCs) to model the number of customers/tasks/jobs in the system

Introduc

Two usef results

Little's law

Markovia queues

M/M/1/I M/M/C

M/M/C/

Model description

Effective arrival rate

Example

Recipe for analysing queues

- Use Continuous Time Markov Chains (CTMCs) to model the number of customers/tasks/jobs in the system
- $2. \ \ Determine the stationary \ distribution \ using \ Kolmogorov's \ theorem$

Introduc

Two used

Little's law

Markovi

queues M/M/1

M/M/C/

M/M/C/ Network

Model descript

Effective arrival rat

analysis

Recipe for analysing queues

- 1. Use Continuous Time Markov Chains (CTMCs) to model the number of customers/tasks/jobs in the system
- 2. Determine the stationary distribution using Kolmogorov's theorem
- 3. Compute the performance measures
 - · Deduce mean number in the system from the stationary distribution
 - Apply Little's law and/or PASTA as necessary to compute other performance metrics

Introduc-

Two useful esults

Little's lay

Markovian

queues

M/M/1/K

1V1/1V1/C

Network

of queues

description

Effective arrival rate

Performace analysis

Example

4.3 Markovian queues

Introdu tion

Two uses results PASTA Little's las

Markovia queues

M/M/1 M/M/1/ M/M/C

M/M/C M/M/C

Model description Effective arrival rate Performace analysis Poisson Arrivals

Server

Task-sizes are exponentially distributed

The M/M/1 queue

- Arrival process: Poisson of rate λ
- Job-size distribution: $\exp(\mu)$
- 1 server
- Infinite system capacity
- FIFO discipline

Difference between job-size and service time

- Job-size is the amount of work a customer brings (e.g., in a supermarket, job-size
 of a customer is he number of items in her caddie)
- Service time of a customer is the time the server spends to finish the work of this customer. For a given job-size, faster the server, lower is the service time.

Lemma (Service time distribution)

Let v be the server speed. If the job-size distribution is $\exp(\mu)$, then the service time distribution is $\exp(v\mu)$.

Assumption: Server speed is 1

The M/M/1 queue

Performance measures

- Mean sojourn time
- · Probability server is idle or is busy

Recipe for computing performance measures

- 1. Construct a Markov model
- Determine stationary distribution
- 3. Compute performance measure

Introdu tion

results
PASTA
Little's law

Markov queues

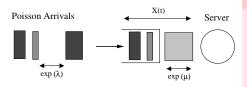
M/M/1 M/M/1/ M/M/C

Network of queue

description Effective arrival ra

Perform

M/M/1 queue: Markov model



Recall: Poisson process

- Poisson process of rate λ means time between two successive arrivals is exponentially distributed with rate λ .
- Only one arrival at a time, i.e., no batch arrivals.
- Let X(t) be the number of customers in the system at time t
 - X(t) is a continuous-time stochastic process
 - X(t) increases by 1 when a customer arrives
 - X(t) decreases by 1 when a customer finishes service and leaves

Show X(t) is a CTMC

When is a stochastic process a CTMC?

- 1. Countable state space
- 2. Time spent in each state is exponentially distributed
- 3. Probability of going to state j from state i does not depend on the history

Introduc tion

Two usefu

Little's la

Markovia

queues

M/M/1

M/M/C

Networl

of queue

description

Performa

Example

M/M/1 queue: Markov model

Check X(t) meets these conditions

1. X(t) is a non-negative integer \Rightarrow countable state space

Performa analysis Example M/M/1 queue: Markov model

Check X(t) meets these conditions

- 1. X(t) is a non-negative integer \Rightarrow countable state space
- 2. Time spent in state i

State	Possible events	Distribution of time spent in this state
i = 0	a customer arrives	$\exp(\lambda)$
i > 0	a customer arrives and state goes to $i+1$ a customer leaves and state goes to $i-1$	$\exp(\lambda + \mu)$

M/M/1 queue: Markov model

Check X(t) meets these conditions

- 1. X(t) is a non-negative integer \Rightarrow countable state space
- 2. Time spent in state i

State	Possible events	Distribution of time spent in this state
i = 0	a customer arrives	$\exp(\lambda)$
i > 0	a customer arrives and state goes to $i+1$ a customer leaves and state goes to $i-1$	$\exp(\lambda + \mu)$

3. Probability of going to state j from state i

Current state (i)	Next state (j)	Transition probability
i = 0	j = 1	1
i > 0	j = i + 1 $j = i - 1$	$\frac{\lambda}{\lambda + \mu}$ $\frac{\mu}{\lambda + \mu}$

M/M/1 M/M/1/K

M/M/C

M/M/1 queue: Markov model

X(t) is a CTMC

Introduc

Two usef results PASTA

Markovia

queues M/M/1

M/M/1/K M/M/C

M/M/C/

of queue Model descripti

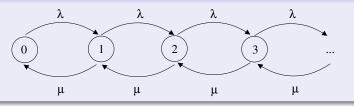
Effective arrival ra

analysis

M/M/1 queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Introduc-

Two useforesults
PASTA

Markovia

queues M/M/1

M/M/C

M/M/C/ Network

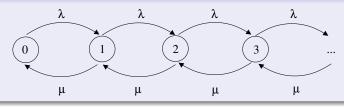
Model description Effective

Performa analysis

M/M/1 queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Transition matrix of X(t)

$$Q = \begin{bmatrix} 0 & 1 & 2 & \cdots \\ -\lambda & \lambda & 0 & \cdots \\ \mu & -(\lambda + \mu) & \lambda & \ddots \\ 0 & \mu & \ddots \\ \vdots & \ddots & \ddots & \cdots \end{bmatrix}$$

Introd tion

Two usef results PASTA Little's lav

Markovia queues M/M/1

M/M/1/ M/M/C M/M/C/

Networks of queues Model description Effective

Performa analysis Example

M/M/1 queue: Stationary distribution

X(t) is a birth-death process with $\lambda_i = \lambda$ and $\mu_i = \mu$

Theorem (Stationary distribution of X(t))

Let π_i be the stationary probability of finding i customers in the system. Then,

$$\boxed{\pi_i = (1 - \rho)\rho^i} \tag{2}$$

where

$$\rho = \frac{\lambda}{\mu}$$

is the load on the system.

Proof.

Apply the formula for birth-death processes with $\lambda_i = \lambda$ and $\mu_i = \mu$.

Meaning of ρ

On average, λ customers arrive per unit time and each customer brings μ^{-1} amount of work on average. So, $\rho = \lambda \mu^{-1}$ is the average amount of works that arrives to the queue in a unit time.

M/M/1 queue: Performance measures

Stability

Stability means that the number in the queue does not grow to infinity. For an M/M/1 queue to be stable,

$$\rho < 1 \tag{3}$$

Interpretation: ρ (which is the rate of work entering the queue) should be less than 1 (which is the rate at which server can work of). Recall, the speed of server is 1.

Probability server is busy

The server is busy when there is at least one customer in the queue. Therefore,

$$P_{busy} = \sum_{i \ge 1} \pi_i = \rho.$$

This is also the fraction of time the server is busy.

Probability a customer has to wait

A customer has to wait if the server is busy when she arrives. Using the PASTA property

$$P_{wait} = P_{busy}$$

M/M/1 queue: Performance measures

Mean number in the queue

Let \bar{N} be the mean number in the queue. Then,

$$\bar{N} = \sum_{i \ge 0}^{\infty} i \pi_i$$

That is,

$$\bar{N} = \frac{\rho}{1 - \rho} \tag{4}$$

Mean number waiting in the queue

This is the number waiting and excludes the customer in service. Let \bar{N}_q be the mean number in the queue. Then,

$$\bar{N}_q = \sum_{i>1} (i-1)\pi_i$$

That is,

$$\bar{N}_q = \frac{\rho^2}{1 - \rho} \tag{5}$$

M/M/1 queue: Performance measures

Mean sojourn time

Let \bar{T} be the mean number in the queue. From Little's law

$$\bar{T} = \frac{N}{\lambda}$$

That is,

$$\boxed{\bar{T} = \frac{1}{\mu - \lambda}} \tag{6}$$

Mean waiting time

This is the mean time a customer has to wait before being taken into service Let \bar{W}_q be the mean number in the queue.

From the Little's law applied to the waiting room

$$\bar{W} = \frac{\bar{N}_q}{\lambda}$$

That is,

$$\bar{W} = \frac{\rho}{\mu - \lambda}$$

(7)

M/M/1

M/M/1/K M/M/C

M/M/C/C

M/M/1 queue: example

Example

• Given data

M/M/1

M/M/1/K M/M/C

M/M/1 queue: example

Example

- · Given data
 - Poisson process with 0.4 customers arriving on an average every minute.

M/M/1

M/M/1 queue: example

Example

- · Given data
 - Poisson process with 0.4 customers arriving on an average every minute.

$$\Rightarrow \lambda = 0.4~\mathrm{per}$$
 minute

· Exponential service time distribution with mean 2 minutes

M/M/1

M/M/1 queue: example

Example

- · Given data
 - Poisson process with 0.4 customers arriving on an average every minute.

$$\Rightarrow \lambda = 0.4~\mathrm{per}$$
 minute

· Exponential service time distribution with mean 2 minutes

$$\Rightarrow \frac{1}{\mu} = 2 \text{ minutes}$$

M/M/1

M/M/1 queue: example

Example

- · Given data
 - Poisson process with 0.4 customers arriving on an average every minute.

$$\Rightarrow \lambda = 0.4~\mathrm{per}$$
 minute

· Exponential service time distribution with mean 2 minutes

$$\Rightarrow \frac{1}{\mu} = 2 \text{ minutes}$$

M/M/1

M/M/1 queue: example

Example

- · Given data
 - Poisson process with 0.4 customers arriving on an average every minute.

$$\Rightarrow \lambda = 0.4~\mathrm{per}$$
 minute

· Exponential service time distribution with mean 2 minutes

$$\Rightarrow \frac{1}{\mu} = 2 \text{ minutes}$$

· Compute the load on the server

Performa analysis Example M/M/1 queue: example

Example

- Given data
 - $\bullet\,$ Poisson process with 0.4 customers arriving on an average every minute.

$$\Rightarrow \lambda = 0.4$$
 per minute

 $\bullet\;$ Exponential service time distribution with mean 2 minutes

$$\Rightarrow \frac{1}{\mu} = 2 \text{ minutes}$$

Compute the load on the server

$$\rho = \frac{\lambda}{\mu} = 0.8$$

 $ho < 1 \Rightarrow ext{ queue is stable}$

Introduc tion

Two usefu results

PASTA Little's la

Markovia

queues

M/M/1 M/M/1/1

M/M/C M/M/C/

Network

Model descriptio

Effective arrival rate

analysis

M/M/1 queue: example

Example (continued)

• Stationary distribution

$$\pi_i = (1 - \rho)\rho^i = 0.2 \cdot 0.8^i$$

Introduction

Two usefu results

PASTA Little's la

Markovia

queues M/M/1

M/M/1/ M/M/C

Networl

Model description Effective

Performa analysis M/M/1 queue: example

Example (continued)

• Stationary distribution

$$\pi_i = (1 - \rho)\rho^i = 0.2 \cdot 0.8^i$$

• Probability server is busy: $P_{busy} = \rho = 0.8$

M/M/1 queue: example

Example (continued)

• Stationary distribution

$$\pi_i = (1 - \rho)\rho^i = 0.2 \cdot 0.8^i$$

- Probability server is busy: $P_{busy} = \rho = 0.8$
- Mean number in the queue

$$\bar{N} = \frac{\rho}{1 - \rho} = 4$$

M/M/1

M/M/1 queue: example

Example (continued)

· Stationary distribution

$$\pi_i = (1 - \rho)\rho^i = 0.2 \cdot 0.8^i$$

- Probability server is busy: $P_{busy} = \rho = 0.8$
- Mean number in the queue

$$\bar{N} = \frac{\rho}{1 - \rho} = 4$$

Mean number waiting in the queue

$$\bar{N}_q = \frac{\rho^2}{1 - \rho} = 3.6$$

Example (continued)

• Stationary distribution

$$\pi_i = (1 - \rho)\rho^i = 0.2 \cdot 0.8^i$$

- Probability server is busy: $P_{busy} = \rho = 0.8$
- Mean number in the queue

$$\bar{N} = \frac{\rho}{1 - \rho} = 4$$

Mean number waiting in the queue

$$\bar{N}_q = \frac{\rho^2}{1 - \rho} = 3.6$$

· Mean sojourn time

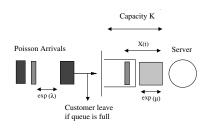
$$ar{T} = rac{1}{\mu - \lambda} = 10 ext{ minutes}$$

· Mean waiting time

$$ar{W} = rac{
ho}{\mu - \lambda} = 8 ext{ minutes}$$

M/M/1/K

The M/M/1/K queue



- Arrival process: Poisson of rate λ
- Job-size distribution: $\exp(\mu)$
 - 1 server
- Capacity K
- FIFO discipline

Performance measures

- · Probability a customer is rejected
- Mean sojourn time
- · Probability server is idle or is busy

Introduc

Two usef results

Little's la

Markovia queues

M/M/1 M/M/1/K

M/M/C

M/M/C

Networ of queu

Model description

Effective arrival rate

analysis Example

M/M/1/K queue: Markov model

- Let X(t) be the number of customers in the system at time t
 - X(t) is a continuous-time stochastic process
 - X(t) increases by 1 when a customer arrives except when the queue is full
 - \bullet X(t) decreases by 1 when a customer finishes service and leaves

Show X(t) is a CTMC using the same argument that was used for the M/M/1 queue

Introduc

Two usefu

PASTA

Markoviar

queues

M/M/1

M/M/1/K M/M/C

M/M/C/0

Network

of queues

description Effective

arrival rate

analysis

M/M/1/K queue: Markov model

X(t) is a CTMC

Introduc

Two useforesults
PASTA

Markovia queues

queues M/M/1 M/M/1/K

M/M/C M/M/C/

Network

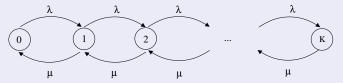
Model description Effective arrival ra

analysis

M/M/1/K queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Introduction

Two usef results PASTA

Markovi queues M/M/1

M/M/1 M/M/1/K M/M/C

M/M/C/

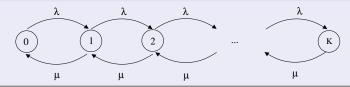
of queue Model descriptio Effective arrival rate

analysis

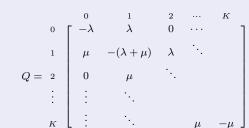
M/M/1/K queue: Markov model

 $\boldsymbol{X}(t)$ is a CTMC

Transition diagram of X(t)



Transition matrix of X(t)



M/M/1/K

M/M/1/K queue: Stationary distribution

X(t) is a birth-death process with

$$\lambda_i = \lambda, \qquad i \le K - 1$$

$$\mu_i = \mu, \qquad i \le K$$
(8)
$$(9)$$

$$\mu_i = \mu, \qquad i \le K \tag{9}$$

Theorem (Stationary distribution of X(t))

Let π_i be the stationary probability of finding i customers in the system. Then,

$$\pi_i = \frac{\rho^i}{\sum_{j=0}^K \rho^j} \tag{10}$$

with $\rho = \lambda \mu^{-1}$.

M/M/1/K queue: Performance measures

Stability

This queue is always stable because the number of customer in the queue is always finite.

Probability queue is full

The queue is full when there are K customer in the queue.

$$P_{full} = \pi_K$$

This is also the fraction of time the queue is full.

Probability a customer is rejected

A customer is rejected when the queue is full. Using the PASTA property

$$P_{reject} = P_{full} = \pi_K$$

Other performance measures

Use the same method as for the M/M/1 queue.

Introduc

Two user

Markov

M/M/1 M/M/1/K

M/M/C M/M/C

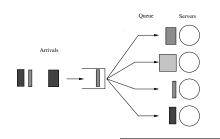
Networ

Model descript

Effective arrival ra

analysis

The M/M/C queue



- Arrival process: Poisson of rate λ
- Job-size distribution: $\exp(\mu)$
- C servers
- Infinite system capacity
- FIFO discipline

Note: C = 1 gives the M/M/1 queue

Performance measures

- Probability a customer has to wait
- · Mean sojourn time
- •

Introduc

Two usefu

Toul ()

Markovia

queues

M/M/1/ M/M/C

M/M/C/

Network of queue

description Effective

Performac analysis M/M/C queue: Markov model

- Let X(t) be the number of customers in the system at time t
 - X(t) is a continuous-time stochastic process
 - X(t) increases by 1 when a customer arrives
 - X(t) decreases by 1 when a customer finishes service and leaves

Show X(t) is a CTMC

Introduction

Two usefuresults

PASTA Little's la

Markovia queues

queues M/M/1

M/M/C

Network

of queue Model

Effective arrival rate

Performa analysis

Example

M/M/C queue: Markov model

Check $\boldsymbol{X}(t)$ meets the required conditions

1. X(t) is a non-negative integer \Rightarrow countable state space

M/M/C queue: Markov model

Check X(t) meets the required conditions

- 1. X(t) is a non-negative integer \Rightarrow countable state space
- 2. Time spent in state i

State	Possible events	Distribution of time spent in i
- : 0	<i>t</i>	
i = 0	a customer arrives	$\exp(\lambda)$
$0 < i \le C$	a customer arrives and state goes to $i+1$ a customer leaves and state goes to $i-1$	$\exp(\lambda + i\mu)$
$i \ge C$	a customer arrives and state goes to $i+1$ a customer leaves and state goes to $i-1$	$\exp(\lambda + C\mu)$

M/M/C queue: Markov model

Check X(t) meets the required conditions

- 1. X(t) is a non-negative integer \Rightarrow countable state space
- 2. Time spent in state *i*

State	Possible events	Distribution of
	i	time spent in i
i = 0	a customer arrives	$\exp(\lambda)$
$0 < i \leq C$	a customer arrives and state goes to $i+1$ a customer leaves and state goes to $i-1$	$\exp(\lambda + i\mu)$
$i \geq C$	a customer arrives and state goes to $i+1$ a customer leaves and state goes to $i-1$	$\exp(\lambda + C\mu)$

3. Probability of going to state j from state i

Current state (i)	Next state (j)	Transition probability
i = 0	j = 1	1
$0 < i \leq C$	j = i + 1 $j = i - 1$	$rac{\lambda}{\lambda+i\mu} \ rac{i\mu}{\lambda+i\mu}$
$i \geq C$	j = i + 1 $j = i - 1$	$ \frac{\lambda}{\lambda + C\mu} $ $ \frac{C\mu}{\lambda + C\mu} $

Introduc-

Two usefu

PASTA

Little's lav

Markovia

queues

M/M/1

M/M/1/K

M/M/C

M/M/C/C

Network of queue

of queues

Model descriptio

Effective arrival rate

Performac

Example

M/M/C queue: Markov model

X(t) is a CTMC

Introduc tion

> Two usef results

Table 1

Little 5 III

queues

M/M/1

M/M/1/K

M/M/C

M/M/C

Networl of queue

of queu Model

description

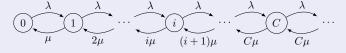
arrival ra

Evample

M/M/C queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Introduc

Two usef results

Little's la

Markovia queues

M/M/1

M/M/1/ M/M/C

M/M/C

M/M/C

Network of queue

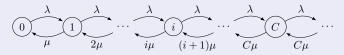
Model description

Effective arrival rat

analysis Example M/M/C queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Transition matrix of X(t)

Exercise!

M/M/C queue: Stationary distribution

X(t) is a birth-death process with

$$\lambda_i = \lambda, \qquad i \ge 0 \tag{11}$$

$$\mu_i = \begin{cases} i\mu & 1 \le i \le C \\ C\mu & i > C \end{cases} \tag{12}$$

Theorem (Stationary distribution of X(t))

Let $\rho = \lambda \mu^{-1}$. Then

$$\pi_{i} = \begin{cases} \pi_{0} \frac{\rho^{i}}{i!} & 0 \leq i \leq C \\ \pi_{0} \frac{\rho^{i}}{C!C^{i}-C} & i > C \end{cases}$$
 (13)

with

$$\pi_0 = \left(\sum_{i=0}^C \frac{\rho^i}{i!} + \sum_{i>C} \frac{\rho^i}{C!C^{i-C}}\right)^{-1}$$
 (14)

M/M/C queue: Performance measures

Stability

$$\lambda < C\mu \tag{15}$$

Probability a customer has to wait

A customer has to wait when all the servers are busy. Using the PASTA property,

$$P_{wait} = \sum_{i>C} \pi_i \tag{16}$$

(17)

That is,

$$P_{wait} = \frac{\frac{\rho^C}{C!(1-\rho/C)}}{\sum\limits_{i=0}^{C}\frac{\rho^i}{i!} + \sum\limits_{i>C}\frac{\rho^i}{C!C^{i-C}}}$$

 P_{wait} is called the Erlang-C probability

Other performance measures

Use the same method as for the M/M/1 queue.

Introdu tion

results

Markovia

Markoviai queues M/M/1

M/M/1/ M/M/C

M/M/C/ Network

Model description Effective

Performa analysis

M/M/C queue: Application to call-centers

Dimensioning a call-center (problem statement)

- · Given data
 - · Poisson arrivals with rate 3 customers per minute
 - $\bullet\,$ Call times are exponentially distributed with mean 5 minutes

Introduction

Two user

PASTA Little's la

Markovia queues

M/M/1/2 M/M/C

M/M/C/

Model description Effective

Performa analysis M/M/C queue: Application to call-centers

Dimensioning a call-center (problem statement)

- · Given data
 - · Poisson arrivals with rate 3 customers per minute
 - · Call times are exponentially distributed with mean 5 minutes
- Objective

Customer should not have to wait 99% of the time

Introduc

results
PASTA

Markovia queues

M/M/1 M/M/1/K M/M/C

M/M/C/

of queue Model description Effective

arrival rat Performac analysis

M/M/C queue: Application to call-centers

Dimensioning a call-center (problem statement)

- · Given data
 - · Poisson arrivals with rate 3 customers per minute
 - Call times are exponentially distributed with mean 5 minutes
- Objective

Customer should not have to wait 99% of the time

Question

How many agents are required?

Introduc tion

Two usef results

PASTA Little's lav

Markovia queues

M/M/1

M/M/C

Networ

Model descript

Effective arrival rat

analysis Example

M/M/C queue: Application to call-centers

Dimensioning a call-center (solution)

- Given data
 - Poisson arrivals with $\lambda=3$ per minute
 - · Exponential service times with

$$\frac{1}{\mu} = 5 \text{ minutes}$$

Load

$$\rho = \frac{\lambda}{\mu} = 15$$

analysis

M/M/C queue: Application to call-centers

Dimensioning a call-center (solution)

- · Given data
 - Poisson arrivals with $\lambda=3$ per minute
 - · Exponential service times with

$$\frac{1}{\mu}=5 \text{ minutes}$$

Load

$$\rho = \frac{\lambda}{\mu} = 15$$

Objective

$$P_{wait} < 0.01\,$$

M/M/C queue: Application to call-centers

Dimensioning a call-center (solution)

- Given data
 - Poisson arrivals with $\lambda = 3$ per minute
 - · Exponential service times with

$$\frac{1}{\mu} = 5 \text{ minutes}$$

· Load

$$\rho = \frac{\lambda}{\mu} = 15$$

Objective

$$P_{wait} < 0.01$$

• Use Erlang-C forumla with $\rho = 15$

С	 23	24	25	26	• • • •
P_{wait}	 0.038	0.022	0.012	0.0068	• • • •

M/M/C queue: Application to call-centers

Dimensioning a call-center (solution)

- Given data
 - Poisson arrivals with $\lambda = 3$ per minute
 - · Exponential service times with

$$\frac{1}{\mu}=5 \text{ minutes}$$

· Load

$$\rho = \frac{\lambda}{\mu} = 15$$

Objective

$$P_{wait} < 0.01\,$$

• Use Erlang-C forumla with $\rho=15$

С	 23	24	25	26	<u> </u>
P_{wait}	 0.038	0.022	0.012	0.0068	<i></i>

M/M/C/C

Arrivals Customer is rejected if there is no free server

Queue

Servers

The M/M/C/C queue

- Arrival process: Poisson of rate λ
- Job-size distribution: $\exp(\mu)$
- C servers
- No waiting room
- · FIFO discipline

Performance measures

· Probability a customer is rejected

Introduc

Two usefu

Taul ()

Markovia

queues

M/M/1

M/M/C/C

Network

of queue Model

description Effective

arrival rat Performac

Example

M/M/C/C queue: Markov model

- Let X(t) be the number of customers in the system at time t
 - X(t) is a continuous-time stochastic process
 - X(t) increases by 1 when a customer arrives
 - X(t) decreases by 1 when a customer finishes service and leaves

Show X(t) is a CTMC

Introduction

wo usefu

PASTA

Markoviar

queues

M/M/1 M/M/1/K

141/141/1/

M/M/C

M/M/C/C

Network

Network of queue

Model

Effective

Porformac

analysis

Example

M/M/C/C queue: Markov model

X(t) is a CTMC

Introduc tion

> Two usef results

PASTA

Markovi

queues

M/M/1/

M/M/C

M/M/C/C

Networl

of queu Model

Model description

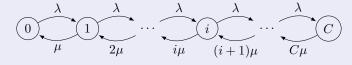
arrival ra

analysis

M/M/C/C queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Introduc

Two usef

PASTA Little's la

Markovi queues

M/M/1

M/M/C

M/M/C/C

Network of queue

Model description

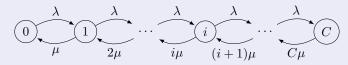
Effective arrival rat

Performa

M/M/C/C queue: Markov model

X(t) is a CTMC

Transition diagram of X(t)



Transition matrix of X(t)

Exercise

Perform analysis

Example

M/M/C/C queue: Stationary distribution

 $\boldsymbol{X}(t)$ is a birth-death process with

$$\lambda_i = \lambda, \qquad i \ge 0 \tag{18}$$

$$\mu_i = i\mu \qquad 1 \le i \le C. \tag{19}$$

Theorem (Stationary distribution of X(t))

Let $\rho = \lambda \mu^{-1}$. Then

$$\pi_i = \pi_0 \frac{\rho^i}{i!}, \quad 0 \le i \le C$$

with

$$\pi_0 = \left(\sum_{i=0}^{C} \frac{\rho^i}{i!}\right)^{-1} \tag{21}$$

(20)

M/M/C/C queue: Performance measures

Stability

Always stable

Probability a customer is rejected

A customer is rejected when all the servers are busy. Using the PASTA property,

$$P_{reject} = \pi_C \tag{22}$$

That is,

$$P_{reject} = \frac{\frac{\rho^C}{C!}}{\sum\limits_{i=0}^{C} \frac{\rho^i}{i!}}$$
 (23)

 P_{reject} is called the Erlang-B probability

Insensitivity

Erlang-B formula is insensitive to the service-time distribution. That is, it is valid for any service-time distribution.

Introduc tion

Two usef results

Little's la

Markovia queues

M/M/1

M/M/C

M/M/C/C

Network of queue

descriptio Effective

Performa

M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (problem statement)

- · Given data
 - Poisson arrivals with rate $10\ \mathrm{calls}\ \mathrm{per}\ \mathrm{minute}$
 - \bullet Call times are exponentially distributed with mean 5 minutes

Introduc tion

Two usef results

Little's la

Markovia queues

M/M/1 M/M/1/I

M/M/C/C

M/M/C

of queue Model

description Effective arrival rate

Performa analysis

M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (problem statement)

- Given data
 - Poisson arrivals with rate 10 calls per minute
 - Call times are exponentially distributed with mean 5 minutes
- Objective

Probability of rejecting a call should be less than 0.1%

Introduc tion

results
PASTA

Markovi

queues M/M/1

M/M/I/ M/M/C

M/M/C/C

of queue Model

description Effective arrival rate

Performa

M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (problem statement)

- Given data
 - Poisson arrivals with rate 10 calls per minute
 - Call times are exponentially distributed with mean 5 minutes
- Objective

Probability of rejecting a call should be less than 0.1%

Question

How many channels to buy? (Spectrum is costly...)

Introduc tion

Two usef results

Little's law

Markovia queues M/M/1

M/M/1/ M/M/C

M/M/C/C

Network of queue

descriptio

Effective

analysis

M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (solution)

- · Given data
 - Poisson arrivals with $\lambda = 10$ per minute
 - Exponential service times with

$$\frac{1}{\mu} = 4 \text{ minutes}$$

Load

$$\rho = \frac{\lambda}{\mu} = 40$$

Introduction

Two used results

Markovia

queues M/M/1

M/M/1/I M/M/C

M/M/C/C

Networl

Model description

Effective arrival rat

analysis Evample M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (solution)

- Given data
 - Poisson arrivals with $\lambda = 10$ per minute
 - Exponential service times with

$$\frac{1}{\mu} = 4 \text{ minutes}$$

Load

$$\rho = \frac{\lambda}{\mu} = 40$$

Objective

$$P_{reject} < 0.001\,$$

M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (solution)

- Given data
 - Poisson arrivals with $\lambda = 10$ per minute
 - Exponential service times with

$$\frac{1}{\mu} = 4 \text{ minutes}$$

Load

$$\rho = \frac{\lambda}{\mu} = 40$$

Objective

$$P_{reject} < 0.001\,$$

• Use Erlang-B forumla with $\rho=50$

С		57	58	59	60	
P_{wait}	• • • •	0.0022	0.0015	0.00102	0.00068	

M/M/C/C queue: Application to telecommunication networks

Dimensioning a telecommunication network (solution)

- Given data
 - Poisson arrivals with $\lambda = 10$ per minute
 - Exponential service times with

$$\frac{1}{\mu} = 4$$
 minutes

Load

$$\rho = \frac{\lambda}{\mu} = 40$$

Objective

$$P_{reject} < 0.001\,$$

• Use Erlang-B forumla with $\rho = 50$

С		57	58	59	60	<u> </u>
P_{wait}	•••	0.0022	0.0015	0.00102	0.00068	

M/M/1/K

M/M/C

Networks of queues

4.4 Networks of queues

Introduc

Two usefu results PASTA Little's law

Markovia queues M/M/1 M/M/1/K M/M/C

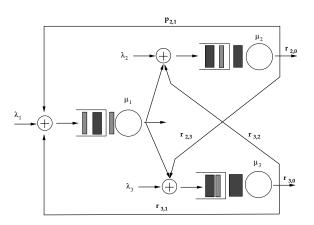
Networks

of queues Model

Effective arrival rate

analysis

Network of queues



Applications

Manufacturing facilities, shopping malls,...

M: number of queues in the network

At queue *i*:

- Arrival process: Poisson of rate λ_i
- Job-size distribution: $\exp(\mu_i)$
- C_i servers
- Infinite system capacity
- · FIFO discipline
- $r_{i,j}$: probability of going to queue j after leaving queue i
- ullet $r_{i,0}$; probability of leaving the network after finishing in queue i

Remark

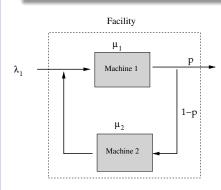
Networks can be defined for other disciplines and for finite capacity queue.

Model description

Example: a manufacturing facility

Consider a manufacturing facility with two machines. Orders arrive according to Poisson process of rate λ_1 . It takes $\exp(\mu_1)$ distributed time to process an order in machine 1. When an order leaves machine 1 it is tested for quality control. If it passes the quality test, the order is delivered to the customer. Otherwise, it is sent to machine 2 where it is components are recovered (this takes time $\exp(\mu_2)$ after which it is sent back to machine 1 for processing.

Assume p is the probability of passing the quality test.



- M = 2
- $\lambda_1 = \lambda_1, \lambda_2 = 0$
- $C_1 = C_2 = 1$
- $r_{1,1} = 0, r_{1,2} = 1 p, r_{2,1} = 1,$ $r_{2,2} = 0$
- $r_{1,0} = p, r_{2,0} = 0$

Introduction

Two usefu results PASTA Little's law

Markovi queues M/M/1

M/M/1/I M/M/C M/M/C/

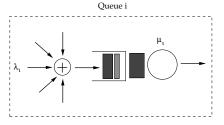
of queue Model descriptio

Effective arrival rate

analysis Example

Effective arrival rate

 Customers arrive to a queue not only from outside the network but also from queue inside the network. The total arrival rate to queue i is this larger than λ_i.



Introduction

Two usef results PASTA Little's law

Markovi queues M/M/1 M/M/1/

M/M/1/I M/M/C M/M/C/

of queue Model description

Effective arrival rate

analysis Example

Effective arrival rate

 Customers arrive to a queue not only from outside the network but also from queue inside the network. The total arrival rate to queue i is this larger than λ_i.



 ν_i : effective arrival rate to queue i

Effective arrival rate

• Queue j is stable \Rightarrow

rate of outflow from queue
$$j=$$
 rate of inflow into queue $j=$ ν_{j}

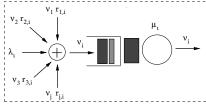
• Rate of flow from queue j to queue i

$$\nu_j r_{j,i}$$

that is, what leaves queue j multiplied by the probability to going from j to i.

• Thus, effective arrival rate to queue *i* is

Queue i



$$\nu_i = \lambda_i + \sum_{j=1}^M \nu_j r_{j,i}$$

Performa analysis Example

Some notation

• $\vec{\lambda}$: vector of external arrival rates

$$\vec{\lambda} = [\lambda_1, \lambda_2, \dots, \lambda_M]$$

- $\vec{\nu}$: Vector of external arrival rates
- R: Routing matrix

Theorem (Effective arrival rate)

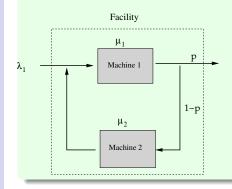
The effective arrival rate is the solution of

$$\vec{\nu} = \vec{\lambda} + \vec{\nu}R$$

analysis Example

Effective arrival rate

Example: a manufacturing facility



- $\vec{\lambda} = [\lambda_1, 0]$
- Routing matrix

$$R = \begin{bmatrix} 1 & 2 \\ 0 & 1-p \\ 1 & 0 \end{bmatrix}$$

· Effective arrival rate

$$[\nu_1, \nu_2] = \left[\frac{\lambda_1}{p}, \frac{\lambda_1(1-p)}{p}\right]$$

Introduc

Two usefu results PASTA

Markovia queues

M/M/1 M/M/1/K M/M/C M/M/C/C

Model
description
Effective

Performace analysis

Performance analysis

- $\vec{X}(t) = [X_1(t), X_2(t), \dots, X_M(t)]$, where X_i is number of customers in queue i $\vec{X}(t)$ is a CTMC
- Markov-chain-based <u>direct</u> analysis can be done but is computationally expensive
 - Jackson's theorem gives a simpler way

Introduc

Two usefu results PASTA Little's law

Markoviai queues M/M/1 M/M/1/K M/M/C/C

Model description Effective arrival rate

Performace analysis Example

Performance analysis

• $\vec{X}(t) = [X_1(t), X_2(t), \dots, X_M(t)]$, where X_i is number of customers in queue i $\vec{X}(t)$ is a CTMC

- Markov-chain-based <u>direct</u> analysis can be done but is computationally expensive
- · Jackson's theorem gives a simpler way

Theorem (Jackson)

Let $\pi^{(i)}(n_i)$ be the stationary probability of finding n_i customers in queue i assuming arrival rate ν_i and service rate μ_i when analysed independently of other queues. The stationary distribution of $\vec{X}(t)$ is given by

$$\pi(\vec{n}) = \prod_{i=1}^{M} \pi^{(i)}(n_i) \tag{25}$$

Introduc

Two usefuresults
PASTA
Little's law

Markoviar queues M/M/1 M/M/1/K M/M/C M/M/C/C

of queues

Model
description

Effective
arrival rate

Performa analysis Example

Performance analysis

• $\vec{X}(t) = [X_1(t), X_2(t), \dots, X_M(t)]$, where X_i is number of customers in queue i $\vec{X}(t)$ is a CTMC

- Markov-chain-based <u>direct</u> analysis can be done but is computationally expensive
- Jackson's theorem gives a simpler way

Theorem (Jackson)

Let $\pi^{(i)}(n_i)$ be the stationary probability of finding n_i customers in queue i assuming arrival rate ν_i and service rate μ_i when analysed independently of other queues. The stationary distribution of $\vec{X}(t)$ is given by

$$\pi(\vec{n}) = \prod_{i=1}^{M} \pi^{(i)}(n_i) \tag{25}$$

Interpretation of Jackson's theorem

- ullet The network of M queues can be decomposed into M independent queues.
- Analyse each queue separately using the analysis for single queues taking the arrival rate at queue i to be ν_i and service times to be μ_i .

Introduc

results PASTA

Markovia

queues

M/M/1/I M/M/C

M/M/C/

Network of queue

descriptio

Performace analysis

Recipe for analyzing a network

- 1. Determine the parameters: Routing matrix, arrival rate vector
- 2. Compute the effective arrival rates using

$$\vec{\nu} = \vec{\lambda} + \vec{\nu}R$$

- 3. Apply Jackson's theorem to obtain the stationary distribution
 - Calculate the stationary distribution of each queue independently of the others
- 4. Compute the performance measures

Introduction

Two usefuresults

PASTA Little's la

Markovia queues

M/M/1/I M/M/C/M/M/C/

Network of queue

description Effective arrival rate

Performace analysis

Performance analysis of the example

Recall

- $\nu_1 = \frac{\lambda_1}{p}, \nu_2 = \frac{\lambda_1(1-p)}{p}$
- From Jackson's theorem, machine i is an M/M/1 queue with arrival rate ν_i and service rate μ_i .

Performance analysis of the example

Recall

- $\nu_1 = \frac{\lambda_1}{p}, \nu_2 = \frac{\lambda_1(1-p)}{p}$
- From Jackson's theorem, machine i is an M/M/1 queue with arrival rate ν_i and service rate μ_i .

Performance measures at individual machines

Machine 1

- Load: $\rho_1 = \frac{\nu_1}{\mu_1}$
- Stationary distribution

$$\pi^{(1)}(n_1) = (1 - \nu_1)\nu_1^{n_1}$$

• Mean number in the queue

$$\bar{N}_1 = \frac{\rho_1}{1 - \rho_1}$$

• Mean sojourn time

$$\bar{T}_1 = \frac{1}{\nu_1 - \mu_1}$$

Machine 2

- Load: $\rho_2 = \frac{\nu_2}{\mu_2}$
- Stationary distribution

$$\pi^{(2)}(n_2) = (1 - \nu_2)\nu_2^{n_2}$$

Mean number in the queue

$$\bar{N}_2 = \frac{\rho_2}{1 - \rho_2}$$

Mean sojourn time

$$\bar{T}_2 = \frac{1}{\nu_2 - \mu_2}$$

Introdu

Two usefuresults
PASTA

Markovia queues M/M/1

M/M/1/ M/M/C M/M/C/

Model
description
Effective
arrival rate

Example

Performance analysis of the example

Performance measures of the network

Stationary distribution

$$\pi(n_1, n_2) = \pi^{(1)}(n_1)\pi^{(2)}(n_2)$$

· Probability there are no orders in the facility

$$\pi(0,0) = \pi^{(1)}(0)\pi^{(2)}(0)$$

= $(1 - \rho_1) \cdot (1 - \rho_2)$

• Mean number in the facility

$$\bar{N} = \bar{N}_1 + \bar{N}_2$$

• Mean sojourn time of orders in the facility (apply Little's law to the facility)

$$\bar{T} = \frac{\bar{N}}{\lambda}$$

Important

Orders can go through the machines several times. Therefore,

$$\bar{T} \neq \bar{T}_1 + \bar{T}_2$$

Mean sojourn time in the facility is **not** the sum of the mean sojourn times in each of the machines.