RANDOM SIGNALS

Chapter II

Probability Theory and Random Variables

Objective of Chapter II

- Recall some basic facts concerning Probability theory and Random variables
- Introduce the main notions for the following chapters

1. Axioms of Probability Theory

• Consider a set Ω called a *Probability Space*. For example, consider the rolling of a die, we have

$$\Omega = \{\omega_1 = \text{Face } 1, \omega_2 = \text{Face } 2, \dots, \omega_6 = \text{Face } 6\}$$

- When the die is rolled, we obtain an element $\omega \in \Omega$.
- We can consider $\Omega_1 = \{\omega_2\} \subset \Omega$ is the event Face 2 turns up when the die is rolled.
- We can also consider $\Omega_2 = \{\omega_2, \omega_4, \omega_6\} \subset \Omega$ is the event Face 2, Face 4 or Face 6 turns up
- Subsets Ω_i are events and two events Ω_1 and Ω_2 are called *mutually exclusive if* $\Omega_1 \cap \Omega_2 = \emptyset$
- To manage events, we can use the set theory notation, intersection $\Omega_1 \cap \Omega_2$, union $\Omega_1 \cup \Omega_2 \dots$

1. Axioms of Probability Theory

- We assign probabilities to events via a *probability function* $P(\bullet)$ defined on the set of all subsets of Ω denoted $\mathcal{P}(\Omega)$. $P(\bullet)$ satisfies the following axioms

- i) $P(\Omega_i) \geqslant 0$, $\forall \Omega_i \in \mathcal{P}(\Omega)$
- ii) $P(\Omega) = 1$
- iii) If $\Omega_i \cap \Omega_j = \emptyset$, $i \neq j$, i, j = 1, ..., n, then

$$P(\Omega_1 \cup \Omega_2 \cup \ldots, \cup \Omega_n) = P(\Omega_1) + P(\Omega_2) + \ldots + P(\Omega_n)$$

iv) If $\Omega_i\cap\Omega_j=\emptyset,\; i\neq j,\;\; i,j=1,\dots,n,\dots$, then

$$P(\Omega_1 \cup \Omega_2 \cup \ldots, \cup \Omega_n \cup \ldots) = P(\Omega_1) + P(\Omega_2) + \ldots + P(\Omega_n) + \ldots$$

- The triplet $(\Omega, \mathcal{P}(\Omega), P)$ is called a *Random Experiment*.
- For general sets Ω (for example \mathbb{R}), some care has to be taken to define an appropriate class of events. This class has to be a σ -algebra. In general $\mathcal{P}(\Omega)$ is not a σ -algebra

1. Axioms of Probability Theory

From the above axioms, it is possible to show some special results.

-
$$P(\emptyset) = 0$$

-
$$P(\Omega_1) = 1 - P(C_{\Omega}\Omega_1)$$

-
$$P(\Omega_1 \cup \Omega_2) = P(\Omega_1) + P(\Omega_2) - P(\Omega_1 \cap \Omega_2) \leqslant P(\Omega_1) + P(\Omega_2)$$

- If
$$\Omega_1\subset\Omega_2$$
 then $P(\Omega_2)=P(\Omega_1)+P\left(\Omega_2\cap \complement_\Omega\Omega_1\right)\geqslant P(\Omega_1)$

2. Independence

Definition

Two events Ω_1 and Ω_2 are *independent* if and only if $P(\Omega_1 \cap \Omega_2) = P(\Omega_1).P(\Omega_2)$

- A statement about one event does not affect the statement about the other
- This definition can be extended for more than two events
- When two events are not independent, a statement about one event affects a statement about the other and we can define the conditional probability.

Definition

Consider two events Ω_1 and Ω_2 such that $P(\Omega_2) \neq 0$. The conditional probability of Ω_1 given Ω_2 is defined as

$$P(\Omega_1|\Omega_2) = \frac{P(\Omega_1 \cap \Omega_2)}{P(\Omega_2)}$$

The conditional probability allows the introduction of an a priori knowledge about an event in the evaluation of the probability of another one

3. Random Variables: distribution function

Definition

A fonction $X(\bullet)$ defined on Ω and whose values are in E is called a random variable if for every $x \in E$ the inequality

$$X(\omega) \leqslant x$$

defines a subset of Ω whose probability is defined.

- If $E = \mathbb{R}$, X is called a *real-valued random variable*
- When E is countable, X is called a discrete random variable

Definition

The distribution function of a random variable X is the function from E to [0,1] defined by

$$F_X(x) = P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\})$$

APPLIQUESS

3. Random Variables: distribution function

The main properties of the distribution function are

- $F_X(x)$ is monotone nondecreasing i.e. $F_X(x_1) \leqslant F_X(x_2)$ if $x_1 < x_2$
- $\lim_{x \to \infty} F_X(x) = 1$ and $\lim_{x \to -\infty} F_X(x) = 0$
- $P(x_1 < X \le x_2) = F_X(x_2) F_X(x_1)$
- If $x_1 = x \varepsilon$ and $x_2 = x$, then $P(x \varepsilon < X \le x) = F_X(x) F_X(x \varepsilon)$. Letting $\varepsilon \to 0$, we have

$$P(X = x) = F_X(x) - F_X(x_-)$$

• When E is countable, from the above analysis, F_X is discontinuous at all $x \in E$ where the jump equals P(X = x)

When the random variable is continuous, we can define its density function.

Definition

If the random variable X is continuous, there exists a density function f_X defined as

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

If $F_X(x)$ is continuous at all x, we have

$$f_X(x) = \frac{d}{dt} F_X(x)$$

at all x where the derivative exists.

PROPERTIES

- Since F_X is monotonic, we have $f_X(x) \ge 0$
- \bullet From the properties of F_X , we also have

$$\int_{-\infty}^{\infty} f_X(u) du = 1$$

• If $x_1 \leqslant x_2$,

$$F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(u) du$$

• We also have

$$P(\{x\leqslant X(\omega)\leqslant x+dx\})=f_X(x)dx$$

and
$$P({X(\omega) = x}) = 0$$

EXAMPLE 1

Consider that a telephone call occurs at random in the time interval [0,T]. Let $\Omega=[0,T]$ and consider that

$$P(t_1\leqslant\omega\leqslant t_2)=\frac{t_2-t_1}{T},\;t_1,t_2\in[0,T]\;\;\text{(a call in the interval }[t_1,t_2]\text{)}$$

Consider the random variable $X(\omega) = \omega$

- If x > T then $\{X(\omega) \leqslant x\} = \Omega$ and $P(\{X(\omega) \leqslant x\}) = F_X(x) = 1$
- If x < 0 then $\{X(\omega) \leqslant x\} = \emptyset$ and $P(\{X(\omega) \leqslant x\}) = F_X(x) = 0$
- $\bullet \ \ \text{If} \ 0\leqslant x\leqslant T \ \ \text{then} \ \{X(\omega)\leqslant x\}=\{0\leqslant \omega\leqslant x\} \ \ \text{and} \ \ P(\{X(\omega)\leqslant x\})=F_X(x)=x/T$
- The density function is obtained by differentiation

$$f_X(x) = \begin{cases} 0, & x < 0 \\ 1/T, & 0 < x < T \\ 0, & x > T \end{cases}$$

 $F_X(x)$ not differentiable at 0 and T

EXAMPLE 2

- Consider the experiment of tossing a coin. We have $\Omega = \{p, f\}$, p:heads, f:tails
- $\mathcal{P}(\Omega) = \{\emptyset, \{p\}, \{f\}, \Omega\} \text{ and } P(\{f\}) = p_1, P(\{p\}) = p_2, p_1 + p_2 = 1\}$
- Define the random variable $X(\omega)$ by X(p) = 1 and X(f) = 0
- To determine the distribution function, remark that
 - If $x \ge 1$ then $\{X(\omega) \le x\} = \{X(\omega) = 0\} \cup \{X(\omega) = 1\} = \Omega \Rightarrow F_X(x) = 1$
 - If x < 0 then $\{X(\omega) \leqslant x\} = \emptyset \Rightarrow F_X(x) = 0$
 - If $0 \le x < 1$ then $\{X(\omega) \le x\} = \{X(\omega) = 0\} = \{f\} \Rightarrow F_X(x) = p_1$
 - To unify discrete and continuous random variables, we can obtain the density function by differentiation introducing the Dirac delta function δ . We have

$$f_X(x) = p_1 \delta(x) + p_2 \delta(x - 1)$$

and

$$\int_{-\infty}^{\infty} f_X(u) du = p_1 + p_2 = 1$$

$$\left(\int_{-\infty}^{\infty} f(u)\delta(u-u_0)du = f(u_0)\right)$$

3. Random Variables: Expectation and moments

Definition

- If X is a random variable, we define (when it exists) the expectation (also called average or first moment) by

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$

- More generally if y = g(x), $g(\bullet)$ being a fixed real function, we have

$$E[g(X)] = \int_{-\infty}^{\infty} g(x)f_X(x)dx$$

In particular case when $g(x) = x^n$, the indicator is called the *nth moment*.

- The nth central moments are defined as

$$E[(X - E[X])^n] = \int_{-\infty}^{\infty} (x - E[x])^n f_X(x) dx$$

3. Random Variables: Expectation and moments

- $E[X^2]$ is called the mean square value of X
- $E[(X E[X])^2] = var[X]$ is the variance
- $\sigma[X] = (\nu \alpha r[X])^{1/2}$ is the standard deviation. It measures the dispersion about the mean of X
- If X is discrete taking values x_i with probabilities p_i , i = 1, ..., N, then

$$f_X(x) = \sum_{i=0}^{N} p_i \delta(x - x_i)$$

and

$$E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx = \sum_{i=0}^{N} x_i^n p_i$$

3. Random Variables: Expectation and moments

PROPERTIES

- E[X] is a linear operator i.e. $E[\alpha X + bY] = \alpha E[X] + bE[Y], \forall \alpha, b$
- If a is a constant E[a] = a
- $var[aX + b] = a^2var[X], \forall a, b$
- $var[X] = E[(X E[X])^2] = E[X^2] E[X]^2$. (Huyghens's Theorem)
- $\min_{\alpha} E[(X \alpha)^2] = E[(X E[X])^2] = var[X]$

A random variable may also be specified in terms of its characteristic function defined as

$$\Phi_X(u) = \mathsf{E}[e^{\mathfrak{j} u X}] = \int_{-\infty}^{\infty} \mathsf{f}_X(x) e^{\mathfrak{j} u x} \, dx \, \text{ (Inverse Fourier transform of } \mathsf{f}_X\text{)}$$

and

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_X(u) e^{-jux} dx$$

In particular

$$\mathsf{E}[X^{\mathfrak{n}}] = j^{-\mathfrak{n}} \, \frac{d^{\mathfrak{n}} \Phi_X}{d u^{\mathfrak{n}}}(0) \text{ and } \Phi_X(u) = \sum_{k=0}^{\infty} \frac{j^k \mathsf{E}[X^k]}{k!} u^k$$

Bernoulli distribution

- $\Omega = \{\omega_1, \omega_2\} \text{ and } X(\Omega) = \{0, 1\}$
- P(X = 1) = p and P(X = 0) = 1 p, $p \in [0, 1]$
- The distribution is given by

$$F_X(x) = \begin{cases} 0, & x < 0 \\ 1 - p, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

- The density function is

$$f_X(x) = (1 - p)\delta(x) + p\delta(x - 1)$$

- E[X] = p and var[X] = p(1-p)
- $\Phi_X(u) = 1 p + pe^{ju}$

Binomial distribution

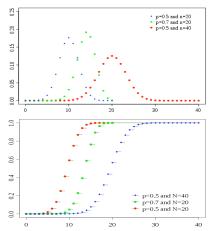
-
$$\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}$$
, $X(\Omega) = \{0, 1, \dots, n\}$, $X = \sum_{i=1}^n X_i$ (X_i : Bernoulli distributed and mutually independent)

-
$$P(X = k) = C_n^k p^k (1-p)^{n-k} \ k = 1, ..., n, \ n \in \mathbb{N}^*, \ p \in [0, 1]$$

- The density function is

$$f_X(x) = \sum_{k=1}^n P(X = k)\delta(x - k)$$

- E[X] = np and var[X] = np(1-p)
- $\Phi_X(\mathfrak{u}) = (1 \mathfrak{p} + \mathfrak{p}e^{\mathfrak{j}\mathfrak{u}})^n$



Binomial random variable: density and distribution functions

Poisson distribution

-
$$\Omega = \{\omega_1, \omega_2, \ldots, \omega_n, \ldots\}, X(\Omega) = \mathbb{N}^*$$

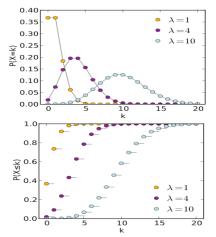
- The probabilities are

$$P(X = k) = \frac{\lambda^k}{k!}e^{-\lambda}, \quad \lambda$$
: positive parameter

- The density function is

$$f_X(x) = \sum_{k=1}^{\infty} P(X = k)\delta(x - k)$$

- $E[X] = \lambda$ and $var[X] = \lambda$
- $\Phi_X(\mathfrak{u}) = e^{\lambda(e^{\mathfrak{j}\mathfrak{u}}-1)}$



Poisson random variable: density and distribution functions

Uniform distribution (continuous)

- $X(\Omega) = \mathbb{R}$
- The density function is given by

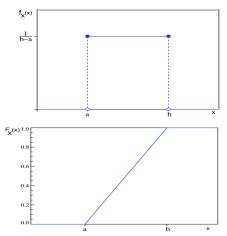
$$f_X(x) = \begin{cases} 0, & x < a \\ \frac{1}{b-a}, & a \leqslant x \leqslant b \\ 0, & x > b \end{cases} \quad a, b \in \mathbb{R}$$

- The distribution function is

$$F_X(x) = \left\{ \begin{array}{ll} 0, & x < \alpha \\ \frac{x-\alpha}{b-\alpha}, & \alpha \leqslant x \leqslant b \\ 1, & x > b \end{array} \right.$$

-
$$E[X] = (a + b)/2$$
 and $var[X] = (b - a)^2/12$

$$- \Phi_{X}(u) = \frac{e^{jbu} - e^{jbu}}{it(b-a)}$$



Uniform random variable: density and distribution functions

Gaussian (Normal) distribution (continuous)

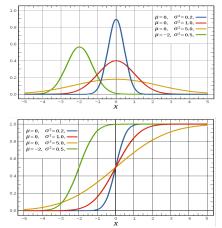
- $X(\Omega) = \mathbb{R}$
- The density function is given by

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \mu, \sigma \in \mathbb{R}^+$$

- The distribution function is

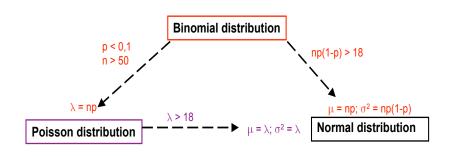
$$F_X(x) = P(X \leqslant x) = \frac{1}{2} + erf\left(\frac{x-\mu}{\sigma\sqrt{2}}\right), \ \left(erf(u) = \frac{2}{\sqrt{\pi}} \int_{-\infty}^{u} e^{-u^2} du\right)$$

- $E[X] = \mu$ and $var[X] = \sigma$
- $\Phi_X(u) = e^{j\mu u \frac{\sigma^2 u^2}{2}}$



Normal random variable: density and distribution functions

3. Random Variables: Approximations



Approximations between distributions

3. Random Variables: Tchebycheff's Inequatlity

Theorem (Tchebycheff)

Consider a random variable X. We have

$$P(E[X] - \epsilon < X < E[X] + \epsilon) \geqslant 1 - \frac{\sigma_X^2}{\epsilon^2}$$

For any random variable, if $\sigma_X \ll \varepsilon$, the probability that X takes values in the interval $[E[X]-\varepsilon, E[X]+\varepsilon]$ is equal to 1.

In some situations, it could be necessary to consider several random variables. For the sequel, consider a pair of random variables will be necessary.

Definition

- Consider two random variables X and Y. We say that they are *jointly distributed* if the are defined on the same probability space.
- They may be characterized by their joint distribution function

$$F_{XY}(x,y) = P(\{X(\omega) \leqslant x\} \cap \{Y(\omega) \leqslant y\})$$

or their joint density function

$$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(u,w) dudw$$

- It follows that

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}}{\partial x \partial y}(x,y)$$

PROPERTIES

-
$$F_{XY}(-\infty, y) = F_{XY}(x, -\infty) = F_{XY}(-\infty, -\infty) = 0 \quad \forall x, y$$

-
$$F_{XY}(\infty,\infty)=1$$
, $F_{XY}(x,y)\geqslant 0$ and $f_{XY}(x,y)\geqslant 0$ $\forall x,y$

- If
$$x_2 > x_1$$
 then $F_{XY}(x_2,y) - F_{XY}(x_1,y) = P(\{x_1 < X(\omega) \leqslant x_2\} \cap \{Y(\omega) \leqslant y\})$

-
$$P(\lbrace x < X(\omega) \leqslant x + dx \rbrace \cap \lbrace y < Y(\omega) \leqslant y + dy \rbrace) = f_{XY}(x, y) dxdy$$

- We have

$$\iint f_{XY}(x,y) dx dy = 1$$

- If X and Y are discrete random variables, the density function is given by

$$f_{XY}(x,y) = \sum_i \sum_j p_{ij} \delta(x-x_i) \delta(y-y_j) \text{ with } p_{ij} = P(X=x_i \text{ and } Y=y_j)$$

- If X and Y are independent the joint density and distribution functions satisfy

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$
 and $F_{XY}(x,y) = F_X(x)F_Y(y)$

We can also extend the moments to the case of a pair of random variables

Definition

- If X and Y are random variables, we define the (n, m)-moment by

$$E[X^{n}Y^{m}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{n}y^{m}f_{XY}(x,y)dxdy$$

- More generally if y=g(x,y)), g(ullet,ullet) being a fixed function, we have

$$E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy$$

- The (n, m)-central moments are defined as

$$E[(X - E[X])^{n}(Y - E[Y])^{m}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - E[X])^{n}(y - E[Y])^{m} f_{XY}(x, y) dx dy$$

PROPERTIES

- E[X] is the (1,0)-moment, E[Y] is the (0,1)-moment and the (0,0)-moment is equal to 1
- The(1,1)-central moment is important. It is called the covariance and is denoted by cov[X,Y]
- We have cov[X,Y] = E[XY] E[X]E[Y] and $cov[X,X] = \sigma_X^2 = var[X]$
- E[XY] is a scalar product. When E[XY] = 0, we say that X and Y are orthogonal
- The ratio

$$\rho[X,Y] = \frac{\text{cov}[X,Y]}{\sigma_X \sigma_Y}$$

defines the correlation coefficient of X and Y. We have $|\rho[X,Y]| \leqslant 1$

- When $\rho[X, Y] = 0$, X and Y are said *uncorrelated*
- When $|\rho[X,Y]| = 1 \Leftrightarrow Y = \alpha X + b$ with probability 1 and

$$\alpha = \frac{cov[X,Y]}{var[X]} \text{ and } b = E[Y] - \frac{cov[X,Y]E[X]}{var[X]}$$

- We can also define the characteristic function as $\Phi_{YX}(\mathfrak{u}_1,\mathfrak{u}_2)=E[e^{i(\mathfrak{u}_1X+\mathfrak{u}_2Y)}]$
- X and Y independent \Rightarrow E[XY] = E[X]E[Y] , cov[X,Y] = 0. The converse is in general false
- X and Y independent $\Leftrightarrow \Phi_{YX}(u_1, u_2) = \Phi_X(u_1)\Phi_Y(u_2)$

Definition

- Consider two random variables X and Y. We define the conditional density function $f_{X|Y}(x|y)$ of x given $\{Y(\omega)=y\}$ for all x and y such that $f_Y(y)>0$ by

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{f_{XY}(x,y)}{\int f_{XY}(x,y)dx}$$

were $f_Y(y)$ is called the *marginal* density function of Y

- Reversing the role of X and Y, we obtain

$$f_{XY}(x,y) = f_{Y|X}(y|x)f_X(x)$$

- Substituting, we obtain the Bayes' rule

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x)f_X(x)}{f_Y(y)}$$

PROPERTIES

Let X and Y be jointly distributed random variables. We have

- $f_{X|Y}(x|y) \geqslant 0$
- $-\int f_{X|Y}(x|y)dx=1$
- $f_{X|Y}(x|y)$ depends of the realizations of Y, it is itself a random variable. More precisely, it is a function of the random variable Y
- $f_X(x) = E[f_{X|Y}(x|Y)] = \int f_{X|Y}(x|y)f_Y(y)dy$
- $f_{X|Y}(x|y) = f_X(x)$ if X and Y are independent

Definition

 The conditional expectation of the random variable X, given the random variable Y is defined by

$$E[X|Y] = \int x f_{X|Y}(x|y) dx$$

E[X|Y] = is a random variable because it depends of the realizations of Y

The conditional variance matrix is then defined by

$$\sigma_{X|Y}^2 = E[(X - E[X|Y])^2|Y]$$

Note that $\sigma_{X|Y}^2$ is also a random variable.

PROPERTIES

Let X,Y,Z be jointly distributed random variables and g(ullet) a scalar-valued function. Then

- E[X|Y] = E[X] if X and Y are independent
- E[X] = E[E[X|Y]]
- E[g(Y)X|Y] = g(Y)E[X|Y]
- E[g(Y)X] = E[g(Y)E[X|Y]]
- $E[a|Y] = a \forall a$
- E[g(Y)|Y] = g(Y)
- $E[aX + bY|Z] = aE[X|Z] + bE[Y|Z] \forall a, b$

