
La norme CEI 61131

Norme définissant le

fonctionnement des API
1 – INTRODUCTION

2 – MODULES LOGICIELS

3 – VARIABLES

4 – LANGAGES

1 – Introduction
2 – MODULES LOGICIELS

3 – VARIABLES

4 – LANGAGES

2

Introduction

 La norme CEI 61131 (en anglais, IEC 61131) a été définie par la Commission électrotechnique
internationale (CEI)

 Première version en 1993

 Elle est révisée tous les 10 ans environ

 La dernière version (troisième édition) date de 2013

 Elle définit des caractéristiques communes à tous les automates afin de garantir une normalisation des
aspects principaux

 Prescriptions électriques

 Prescriptions mécaniques

 Prescriptions fonctionnelles

 Procédures

 Dans sa section 3 (CEI 61131-3), elle définit des langages de programmation standards pour les API

 Syntaxe

 Sémantique

 Représentation

 C’est cette section qui nous intéressera dans ce cours

3

La norme représente la théorie, dans la pratique, les

constructeurs peuvent prendre certaines libertés

2 – Modules logiciels
3 – VARIABLES

4 – LANGAGES

4

1 – INTRODUCTION

Modules logiciels

 Un certain nombre de modules logiciels (Program Organization Units) sont définis
pour structurer les programmes

 La fonction (Function)

 Une ou plusieurs variables d'entrées

 Une seule variable de sortie

 Pas de mémoire interne

 Peut avoir une entrée EN et une sortie ENO indiquant l'absence d'erreur

 Permet le chaînage entre plusieurs blocs

 Le bloc fonctionnel (Function block)

 Peut avoir plusieurs sorties

 Peut avoir une mémoire interne

 Le programme (Program)

 Module logiciel construit à l'aide de fonctions et blocs fonctionnels

 Peut déclarer des variables globales

5

3 – Variables
4 – LANGAGES

6

1 – INTRODUCTION

2 – MODULES LOGICIELS

Emplacement

 3 emplacements existent pour les variables

 Entrée

 Mémoire interne

 Sortie

 Chaque emplacement a un préfixe associé

7

Emplacement Préfixe associé

Entrée I

Mémoire M

Sortie Q

Types natifs

 Un certain nombre de types de

variables sont définis

 Chaque type a une taille en bits

 Chaque type a un préfixe associé

8

Type Taille Préfixe

Bool 1 bit Aucun

Byte 8 bits (1 octet) B

Word 16 bits (2 octets) W

Dword (Double word) 32 bits (4 octets) D

Lword (Long word) 64 bits (8 octets) L

Vecteurs de bits

Types dérivés

 Par ailleurs, d’autres types de

données existent, basés sur ces

tailles

 Les entiers, signés et non signés

 Les réels (en virgule flottante)

 Les unités de temps

 Les caractères

 Etc.

 Les préfixes associé aux types

dérivés sont les mêmes que ceux

des types natifs ayant la même

taille

9

Type Taille Signé

SINT (Short int) 1 octet Oui

INT 2 octets Oui

DINT (Double int) 4 octets Oui

USINT 1 octet Non

UINT 2 octets Non

UDINT 4 octets Non

Type Taille

REAL 4 octets

LREAL 8 octets

Type

TIME

LTIME

DATE

LDATE

Type

CHAR

WCHAR

STRING

WSTRING

Déclaration d’une variable

 La notation d’une variable se

construit par la concaténation des

éléments suivants :

 Le symbole « % »

 Le préfixe d’emplacement

 Le préfixe de taille

 Un ou plusieurs entiers non signés

 Si plusieurs entiers, il doivent être
séparés par le symbole « . »

 On n’a plusieurs entiers que dans le
cas de la définition d’un bit : on
place après le point la position du
bit dans l’octet

 Exemples

 Entrée d’un seul bit

 %I3.5

 Mémoire sur un octet

 %MB2

 Sortie sur 2 octets

 %QW42

10

Le bit 5 de l’octet 3

de la mémoire

d’entrée

L’octet 2 de la

mémoire interne

L’octet 42 de la

mémoire de sortie
Et comme on est sur 2

octets (W pour word),

l’octet 43 qui suit fait

également partie de la

variable)

Utilisation de l’espace mémoire

 Les notations indiquent uniquement l’emplacement de départ de la
variable

 Par exemple, une variable de type « Double word » utilisera 4 octets

 Si on la déclare à l’emplacement %M0, elle utilisera les emplacements
suivants

 %M0

 %M1

 %M2

 %M3

 Il ne faut donc surtout pas déclarer une autre variable à
l’emplacement %M2 par exemple

 Sinon il y a chevauchement, et l’une des variables va écraser l’autre

11

Exemple

 Placer dans la mémoire interne ci-

contre les variables suivantes

 %M3.5

 %MB2

 %MB3

 %MW6

 %MB7

 %M7.3

 Attention aux conflits !

Adresse 7 6 5 4 3 2 1 0

0

1

2

3

4

5

6

7

8

12

Restriction

 Attention, une restriction existe sur l’espace mémoire interne

 L’espace mémoire entre 0 et 99 est réservé aux variables

nécessaires au fonctionnement du système

 L’utilisateur peut donc déclarer ses propres variables à partir de

l’adresse %MB100

 Cette restriction ne s’applique pas aux espaces mémoire d’entrée

et de sortie

13

4 – Langages

14

1 – INTRODUCTION

2 – MODULES LOGICIELS

3 – VARIABLES

Les langages

 La norme définit plusieurs langages, graphiques et textuels

 Langage IL (Instruction List)

 Langage proche de l’assembleur

 Marqué comme obsolète dans la dernière édition, on ne l’étudiera pas

 Langage ST (Structured text)

 Langage de type Pascal

 À peu près de même niveau que le C

 Langage LD (Ladder Diagram)

 Langage graphique basé sur une analogie électrique

 Langage FBD (Function Block Diagrams)

 Langage graphique permettant de faire des assemblages de composants

 Langage SFC (Sequential Function Chart)

 Très inspiré du Grafcet

15

Et chez Siemens ? 16

