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Chapitre 3 : Pôles et Stabilité
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Etude préliminaire de la stabilité par la réponse 

impulsionnelle

𝐺 𝑝
𝐸(𝑝) 𝑆(𝑝) 𝑆 𝑝 = 𝐺 𝑝 . 𝐸(𝑝) avec    𝑬 𝒑 = 𝟏

𝑆 𝑝 = 𝐺 𝑝 ⇒ 𝒔 𝒕 = 𝒈 𝒕

• Remarque : ce mode a l’allure d’une exponentielle dont le taux de
croissance ou décroissance ne dépend que du pôle lui-même.

• Un mode apériodique est un mode associé à un pôle réel.

𝑨𝒊
𝒑 − 𝒑𝒊

⟼ 𝑨𝒊. 𝒆
−𝒑𝒊.𝒕
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Modes apériodiques et modes oscillatoires

• Un mode oscillatoire est un mode associé à une paire de pôles complexes
conjugués.

𝒌

𝒑 + 𝜹 𝟐 +𝝎𝟎
𝟐 =

𝑨𝒊
𝒑 − 𝒑𝒊

+
𝑨𝒊

𝒑 − 𝒑𝒊
⟼ 𝑨𝒊. 𝒆

−𝜹.𝒕𝒔𝒊𝒏(𝝎𝟎
𝟐. 𝒕)

ቊ
−𝜹 = 𝕽(𝒑𝒊)
𝝎𝟎 = 𝕴(𝒑𝒊)

• Remarque : ce mode est constitué d’un terme sinusoïdal pondéré par une
exponentielle. La pulsation de la sinusoïde est égale à la partie imaginaire
(en valeur absolue) 𝝎𝟎 des pôles et le paramètre de l’exponentielle est
donné par leur partie réelle −𝜹.
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×

×

×

Mode apériodique : Influence de la position du 

pôle sur la rapidité du mode
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×

×

×

Mode apériodique : Influence du signe du pôle 

sur le mode temporel
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×

×

×

Mode oscillatoire : Influence de la position du 

pôle sur la rapidité du mode

×

×

×
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Mode oscillatoire : Influence du signe du pôle 

sur le mode temporel

×

×

×

×

×

×
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Récapitulatif 

> 𝕽(𝒑)

𝕴(𝒑)

>
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Les pôles dominants sont ceux qui sont associés aux modes 
dominants (ceux qui ont donc le transitoire le plus long).

STABLE INSTABLE

Modes dominants – Pôles dominants 

𝕽(𝒑𝒊) 𝒍𝒂 𝒑𝒍𝒖𝒔 𝒑𝒆𝒕𝒊𝒕𝒆

p1

p3

p22

p21

𝕽(𝒑)

𝕴(𝒑)

pôle dominant
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Cartes des pôles

𝜔𝑛 = 500𝑟𝑎𝑑/𝑠

𝜔𝑛 = 1000𝑟𝑎𝑑/𝑠

𝜔𝑛 = 1500𝑟𝑎𝑑/𝑠

𝜔𝑛 = 2000𝑟𝑎𝑑/𝑠

𝜻 = 𝟏

𝜻
=
𝟎

𝜻 = 𝐜𝐨𝐬(𝛙)

𝛙

×

×

𝑝1,2 = −𝛿 ± 𝑗𝜔0

−𝜔0

𝜔0

−𝛿

𝝎𝒏 = 𝟐𝟑𝟎𝟎𝒓𝒂𝒅/𝒔
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Pôles dominants : Réponses indicielles d’un 

système d’ordre 3

En pointillé, la 

réponse 

indicielle du 

pôle dominant

seul

×
××

×

×
×

×

×

×
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Pôles dominants : Réponses indicielles d’un 

système d’ordre 3

En pointillé, la 

réponse 

indicielle des 

2 pôles 

dominants

seuls

×

×

×

×

×

×

×

×

×
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Addition d’un pôle ou d’un zéro à une paire de 

pôles dominants

• L’addition d’un pôle 𝒑𝒂𝒅𝒅 à une paire de pôles dominants 𝒑𝒅𝒐𝒎
augmente le temps de montée si 𝒑𝒂𝒅𝒅 ≤ 𝟒. 𝕽 𝒑𝒅𝒐𝒎 .

• L’addition d’un zéro à partie réelle négative 𝒛𝒏 à une paire de pôles
dominants 𝒑𝒅𝒐𝒎 augmente le dépassement si 𝒛𝒏 ≤ 𝟒. 𝕽 𝒑𝒅𝒐𝒎 .

• L’addition d’un zéro à partie réelle positive 𝒛𝒑 à une paire de pôles

dominants 𝒑𝒅𝒐𝒎 diminue le dépassement mais provoque le phénomène
de réponse inverse augmentant ainsi le temps de réponse.
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Exemple : Addition d’un zéro à une paire de 

pôles dominants

• Remarque : Le fait d’ajouter un zéro à la fonction de transfert ajoute la
dérivée de la réponse multipliée par un coefficient égal au zéro.

𝐻 𝑝 =
𝐾

1 +
2𝜁
𝜔𝑛

. 𝑝 +
1
𝜔𝑛
2 . 𝑝

2
+

1

𝛼. 𝜁. 𝜔𝑛
. 𝑝.

𝐾

1 +
2𝜁
𝜔𝑛

. 𝑝 +
1
𝜔𝑛
2 . 𝑝

2

𝐻 𝑝 = 𝐻1(𝑝) + 𝐻2(𝑝) 𝐻2 𝑝 =
1

𝛼. 𝜁. 𝜔𝑛
. 𝑝. 𝐻1(𝑝)

𝒉𝟐 𝒕 =
𝟏

𝜶. 𝜻.𝝎𝒏
.
𝒅𝒉𝟏(𝒕)

𝒅𝒕
ℎ 𝑡 = ℎ1(𝑡) + ℎ2(𝑡)

𝐻 𝑝 =
𝐾. 1 +

1
𝜶. 𝜁. 𝜔𝑛

. 𝑝

1 +
2𝜁
𝜔𝑛

. 𝑝 +
1
𝜔𝑛
2 . 𝑝

2
avec 𝜶 = ±𝟏
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𝒉 𝒕

𝒉𝟏(𝒕)

𝒉𝟐(𝒕)

Addition d’un zéro négatif à une paire de pôles 

dominants (réponse indicielle)

𝑲 = 𝟏
𝜻 = 𝟎, 𝟓
𝝎𝒏 = 𝟏
𝜶 = 𝟏
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𝒉 𝒕

𝒉𝟏(𝒕)

𝒉𝟐(𝒕)

Addition d’un zéro positif à une paire de pôles 

dominants (réponse indicielle)

𝑲 = 𝟏
𝜻 = 𝟎, 𝟓
𝝎𝒏 = 𝟏
𝜶 = −𝟏
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Définition de la stabilité

• Un système est « E𝐁𝐒𝐁 − 𝐬𝐭𝐚𝐛𝐥𝐞 » si et seulement si sa réponse à une entrée
bornée quelconque est bornée.

• Remarque : un signal 𝒇(𝒕) est borné si et seulement si tous les pôles de sa
transformée de Laplace 𝑭(𝒑) sont à partie réelle strictement négative d’ordre
quelconque ou à partie réelle nulle simple (d’ordre1).

On sait que pour un système :

𝑺 𝒑 = 𝑻 𝒑 . 𝑬 𝒑 + 𝑻𝑪𝑰 𝒑 =
𝑵 𝒑

𝑫 𝒑
. 𝑬 𝒑 +

𝑵𝑪𝑰(𝒑)

𝑫(𝒑)
.

Dans ce cas le signal 𝒔(𝒕) est borné si 𝑻 𝒑 possède des pôles à partie réelle
négative.
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Critère mathématique de stabilité

𝐷 𝑝 = 0 ⟹ (𝒑𝒊, 𝒊 = 𝟏⋯𝒏)

• Ce critère concerne les systèmes asservis ou non asservis.
• Dans ce cas on suppose connaître explicitement les pôles 𝒑𝒊 de 𝑻 𝒑 .

• On doit connaître explicitement les pôles 𝒑𝒊 de 𝑻 𝒑 .

Inconvénients du critère mathématique :

• Le calcul de pôles 𝒑𝒊 peut devenir compliqué si l’ordre augmente.

• Définition : Ce système est stable, si les pôles 𝒑𝒊 de 𝑻 𝒑 sont tous à
partie réelle négative.
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Critère algébrique de stabilité : Critère de 

Routh

• Ce critère concerne les systèmes asservis ou non asservis.

• Dans ce cas on suppose connaître l’expression analytique de 𝑻 𝒑 =
𝑵(𝒑)

𝑫(𝒑)
.

• Condition Nécessaire :

Tous les coefficients 𝒂𝒊 du polynôme 𝑫 𝒑 doivent être de même signe et non
nuls.

𝑫 𝒑 = 𝒂𝒏. 𝒑
𝒏 + 𝒂𝒏−𝟏. 𝒑

𝒏−𝟏 +⋯+ 𝒂𝟏. 𝒑 + 𝒂𝟎

Remarque : Dans le cas contraire le système est instable.
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Critère de Routh : Table

an an-2 an-4 a0
...............

an-1 an-3 an-5 a0
...............

b1 b2 b3
...............

c1 c2 c3
...............

.

.

.

f1

g1

Coefficients de D(p)

Coefficients calculés

1ère colonne

• Condition Nécessaire et Suffisante :
Le système sera stable si tous les éléments de la première colonne de la
table Routh sont de même signe.

Remarque : Le nombre de pôles à partie réelle positive est égale au nombre de
changement de signe dans cette première colonne.

• Le nombre de ligne de la table de Routh : 𝒏𝒃𝒍 = 𝝏° 𝑫(𝒑) + 𝟏
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1+iq

1−ip 1+ip

1−iq iq
ip

1p

1q

1−i 1+i. Colième
Colonneère 1

Table de Routh : calcul des coefficients

• On doit connaître l’expression analytique de 𝑻 𝒑 =
𝑵(𝒑)

𝑫(𝒑)
.

Inconvénient du critère algébrique :

𝒓𝒊 = 𝒑𝒊+𝟏 − 𝒒𝒊+𝟏.
𝒑𝟏
𝒒𝟏

𝒓𝒊𝒓𝒊−𝟏

𝒓𝒊−𝟏 = 𝒑𝒊 − 𝒒𝒊.
𝒑𝟏
𝒒𝟏
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1

6

11

6

0

0

0

0

Coefficients 

de D(p)

10

6

0

0

Coefficients 

calculés

STABLE

6116)( 23 +++= ppppD

INSTABLE

442)( 234 ++++= pppppD

Critère de Routh : Exemples

1
è
re

c
o

lo
n

n
e

Coefficients 

de D(p)

1

2

1

4

4

0

0

0

Coefficients 

calculés12 0

4

4-1

ici il y a 2 pôles à 
partie réelle positive 

CN : Vérifiée CN : Vérifiée

ቐ

𝑝1 = −3
𝑝2 = −2
𝑝3 = −1

𝑝1 = −2
𝑝2 = −1

𝑝3 = 0,5 + 1,32. 𝑗
𝑝4 = 0,5 − 1,32. 𝑗

𝑛𝑏𝑙 = 3 + 1
𝑛𝑏𝑙 = 4 + 1
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STABLE
pour 𝟎 < 𝑲 <

𝟏𝟏

𝟏𝟎

𝑇 𝑝 =
𝑆(𝑝)

𝐸(𝑝)
=

𝐾. (1 + 𝑝)

𝐾 + 𝑝 + 11𝑝2 + 10𝑝3

𝑫 𝒑 = 𝟏𝟎𝒑𝟑 + 𝟏𝟏𝒑𝟐 + 𝒑 + 𝑲


+ 𝜀(𝑝)

𝑆𝑀(𝑝)

−

𝐸(𝑝) 𝑆(𝑝)𝑲

𝑝(1 + 10𝑝)

1

1 + 𝑝

Critère de Routh : Exemple sur un système 

asservi

K

0

0

Coefficients 

calculés

1 K
10

11
-

10

11

1

K

0

0

0

0

Coefficients 

de D(p)

𝑲𝒍𝒊𝒎 = 𝟏, 𝟏

CN : Vérifiée si     𝑲 > 𝟎

𝑛𝑏𝑙 = 3 + 1
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Critère graphique de stabilité : Critère du 

revers

• Ce critère concerne uniquement les systèmes asservis qui possèdent une
fonction de transfert de boucle 𝑩 𝒑 ayant des pôles et des zéros à partie
réelle négative.

• Ici on suppose connaître le tracé de 𝑩 𝒑 .


+

)(2 pT

𝜀(𝑝)

𝑆𝑀(𝑝)
−

𝐸(𝑝) 𝑆(𝑝)
)(1 pT

𝑻 𝒑 =
𝑺(𝒑)

𝑬(𝒑)
=

𝑻𝟏 𝒑

𝟏 + 𝑻𝟏 𝒑 . 𝑻𝟐(𝒑)
𝑩 𝒑 =

𝑺𝑴(𝒑)

𝜺(𝒑)
= 𝑻𝟏 𝒑 . 𝑻𝟐(𝒑)
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Critère graphique de stabilité : Critère du 

revers

• La stabilité du système asservi 𝑻(𝒑) ne dépend que des racines de l’équation
𝟏 + 𝑻𝟏 𝒑 . 𝑻𝟐 𝒑 = 𝟎 ou 𝑩 𝒑 = −𝟏.

• Le point −𝟏 porte le nom de point critique.

• Dans ce cas, il est nécessaire de tracer la fonction de transfert de boucle
𝑩 𝒋.𝝎 dans le plan de Bode ou de Nichols et de regarder son
positionnement par rapport au point critique (−𝟏𝟖𝟎°; 𝟎𝒅𝑩).
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Instable

Limite de stabilité

Stable

Critère du revers dans le plan de Bode

• Définition : Le système asservi 𝑻(𝒑) est stable, si la fonction de transfert

de boucle 𝑩(𝒋.𝝎) vérifie : ቊ
𝝋° 𝝎𝟏 > −𝟏𝟖𝟎°

𝑨𝒅𝑩 𝝎−𝟏𝟖𝟎° < 𝟎 𝒅𝑩
.

 dB 0

 0 

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔)

𝑙𝑜𝑔(𝜔)

𝑙𝑜𝑔(𝜔)

𝐴𝑑𝐵 𝜔−180° < 0
×

𝐴𝑑𝐵 𝜔−180° > 0
×

𝜑° 𝜔1 > −180°

×
𝝎𝟏

×
𝝎𝟏

𝜑° 𝜔1 < −180°

×
𝝎𝟏

−𝟏𝟖𝟎°

×
𝝎−𝟏𝟖𝟎°

Tracé de
𝑩(𝒋.𝝎)



27/38Automatique Continue S3 AU-ENOC

 dB 0

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔)

Critère du revers dans le plan de Nichols

 −180 

Point critique

 0 1 2 3
 4

 6

 7

 8

 9

Stable
Instable

Limite de 
stabilité

• Définition : Le système asservi 𝑻(𝒑) est stable, si en parcourant le lieu de
transfert de boucle 𝑩(𝒋𝝎) dans le sens des pulsations croissantes, on laisse
le point critique (−𝟏𝟖𝟎°; 𝟎𝒅𝑩) à droite.

Tracé de
𝑩(𝒋.𝝎)
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Marges de sécurité

• Remarque : Le système asservi 𝑻(𝒑) doit être impérativement stable
malgré :

➢ des fluctuations sur les paramètres,
➢ des incertitudes d’identification.

Marge de gain :

𝑴𝑨 =
𝟏

𝑨(𝝎−𝟏𝟖𝟎°)
ou 𝑴𝑨𝒅𝑩 = −𝑨𝒅𝑩(𝝎−𝟏𝟖𝟎°)

• On appelle 𝝎−𝟏𝟖𝟎° la pulsation pour laquelle le déphasage de boucle est égal à
− 180°.

• 𝑨(𝝎−𝟏𝟖𝟎°) est donc le gain linéaire de boucle pour la pulsation 𝝎−𝟏𝟖𝟎° et
𝑨𝒅𝑩(𝝎−𝟏𝟖𝟎°) le gain logarithmique de boucle pour cette pulsation.

• 𝑴𝑨 correspond à l’augmentation du gain linéaire de boucle pour amener
le système asservi à la limite de stabilité.

• 𝑴𝑨𝒅𝑩 correspond au gain logarithmique de boucle à ajouter pour amener

le système asservi à la limite de stabilité.



29/38Automatique Continue S3 AU-ENOC

Marges de sécurité

• Remarque :
➢ Si 𝑴𝑨𝒅𝑩 et𝑴𝝋° sont positives le système asservi est stable .

➢ Si 𝑴𝑨𝒅𝑩 et 𝑴𝝋° sont nulles le système asservi est à la limite de

stabilité .
➢ Si 𝑴𝑨𝒅𝑩 ou 𝑴𝝋° est négative le système asservi est instable .

Marge de phase :
𝑴𝝋° = 𝟏𝟖𝟎° + 𝝋° 𝝎𝟏

• On appelle 𝝎𝟏 la pulsation pour laquelle le gain linéaire de boucle est égal
à 1 ou le gain logarithmique de boucle est égal à 𝟎𝐝𝐁.

• 𝝋° 𝝎𝟏 est donc le déphasage de boucle pour la pulsation𝝎𝟏.
• 𝑴𝝋° correspond au déphasage supplémentaire pour amener le système

asservi à la limite de stabilité.
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 −180 

Marges de phase et de gain dans le plan de 

Bode

×

𝝎𝟏

×
𝝎−𝟏𝟖𝟎°

𝑀𝜑° = 𝜑° 𝜔1 − (−180°) 𝑴𝝋° = 𝟏𝟖𝟎° + 𝝋° 𝝎𝟏

𝑴𝑨𝒅𝑩 = −𝑨𝒅𝑩(𝝎−𝟏𝟖𝟎°)𝑀𝐴𝑑𝐵 = 0dB − 𝐴𝑑𝐵(𝜔−180°)

 dB 0

 0 

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔)

𝑙𝑜𝑔(𝜔)

𝑙𝑜𝑔(𝜔)

𝑴𝑨𝒅𝑩

𝑴𝝋°

𝐴𝑑𝐵(𝜔−180°)

𝜑°(𝜔1)
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𝑴𝝋°

𝑴𝑨𝒅𝑩

×
𝝎−𝟏𝟖𝟎°

×
𝝎𝟏

𝐴𝑑𝐵(𝜔−180°)

𝜑°(𝜔1)

 dB 0

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔1)

 −180 

𝑀𝜑° = 𝜑° 𝜔1 − (−180°) 𝑴𝝋° = 𝟏𝟖𝟎° + 𝝋° 𝝎𝟏

𝑴𝑨𝒅𝑩 = −𝑨𝒅𝑩(𝝎−𝟏𝟖𝟎°)𝑀𝐴𝑑𝐵 = 0dB − 𝐴𝑑𝐵(𝜔−180°)

Marges de phase et de gain dans le plan de 

Nichols
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 −180 

 dB 0

 0 

Détermination graphique du gain 𝑲𝒍𝒊𝒎

×
𝝎−𝟏𝟖𝟎°

20. log(𝐾𝑙𝑖𝑚) = 20. 𝑙𝑜𝑔 𝐾 +𝑀𝐴𝑑𝐵 ⇒ 𝑲𝒍𝒊𝒎= 𝟏𝟎
𝟐𝟎.𝒍𝒐𝒈 𝑲 +𝑴𝑨𝒅𝑩

𝟐𝟎

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔)

𝑙𝑜𝑔(𝜔)

𝑙𝑜𝑔(𝜔)

𝑴𝑨𝒅𝑩

𝐴𝑑𝐵(𝜔−180°)
tracé pour une valeur

particulière de 𝑲

tracé pour la valeur
𝑲𝒍𝒊𝒎

×
𝝎𝟏

×
𝝎𝟏



33/38Automatique Continue S3 AU-ENOC

 dB 0

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔)

𝑲𝑩 ↗

 dB 0

𝐴𝑑𝐵(𝜔)

𝜑°(𝜔)

𝝋°(𝝎) ↘

Influence de la variation du gain 𝑲𝑩 et du 

déphasage 𝝋°(𝝎) sur la stabilité du système 

bouclé
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Conclusion sur la stabilité des systèmes bouclés

• Toute augmentation du gain de boucle engendre :

➢ une diminution de la stabilité,

➢ et dans certains cas à une instabilité.

• Toute diminution du déphasage de boucle engendre :

➢ une diminution de la stabilité,

➢ et dans certains cas à une instabilité.
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0,25 𝑑𝐵

−3 𝑑𝐵

−1°

−100°

Plan de Nichols et Abaque de Black

• L’abaque de Black est formé de
courbes iso-gain et iso-phase. Cet
abaque permet, à partir de la
connaissance du lieu de transfert
de boucle d’un système à retour
unitaire d’obtenir le lieu de
transfert du système asservi.

𝐄𝐱𝐞𝐦𝐩𝐥𝐞 𝐩𝐨𝐮𝐫 ∶ 𝝎 = 𝟖, 𝟗 𝒓𝒂𝒅/s

2,3 𝑑𝐵

• Gain → 2,3 𝑑𝐵.

−50°
−40°

• Déphasage → 𝑒𝑛𝑡𝑟𝑒 − 50° 𝑒𝑡 − 40°.
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𝐴𝑑𝐵 0 = 0𝑑𝐵

× 0 𝑟𝑎𝑑

Détermination du gain statique 𝑲𝑺

𝐴𝑑𝐵 0 = 20. log(𝐾𝑆)

𝐾𝑆 = 10
𝐴𝑑𝐵 0
20

𝐾𝑆 = 1

• Pour déterminer 𝑨𝒅𝑩 𝟎 , il faut
chercher à quelle courbe iso-gain
la pulsation 𝝎 = 𝟎 𝒓𝒂𝒅/𝒔 est
proche.
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𝐴𝑑𝐵 𝜔𝑅 = 3𝑑𝐵

𝜔𝑅 = 11,3 𝑟𝑎𝑑/𝑠

Détermination de 𝝎𝑹 et du gain maximum  𝑨𝒅𝑩(𝝎𝑹)

• Pour déterminer 𝝎𝑹 , il faut
chercher à quelle courbe iso-gain
le lieu de transfert de boucle est
tangent.

• Pour déterminer 𝑨𝒅𝑩(𝝎𝑹), il suffit
de lire la valeur du gain sur cette
courbe iso-gain.

𝑄𝑑𝐵 = 𝐴𝑑𝐵 𝜔𝑅 − 𝐴𝑑𝐵(0)

𝑄𝑑𝐵 = 3 − 0 = 3 𝑑𝐵
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𝜔−6𝑑𝐵 = 18 𝑟𝑎𝑑/𝑠

𝐵𝑃−6𝑑𝐵 = 0 18 𝑟𝑎𝑑/𝑠

• Pour déterminer 𝝎−𝟔𝒅𝑩 (pulsation
pour laquelle le gain vaut
𝑨𝒅𝑩 𝟎 − 𝟔𝒅𝑩 = 𝟎 − 𝟔𝒅𝑩 =
− 𝟔𝒅𝑩) dans notre cas, il suffit
donc de rechercher l’intersection
du lieu de transfert de boucle avec
la courbe iso-gain −𝟔𝒅𝑩 ; ce
point détermine la pulsation
𝝎−𝟔𝒅𝑩.

Détermination de la pulsation 𝝎−𝟔𝒅𝒃
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