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Ul JPﬁ‘ﬁ‘:fﬁ:'g # Etude préliminaire de la stabilité par la réponse
Impulsionnelle

E (p) S) | SE)=GE.E@ avec E(p)=1

> G(p)

S)=G6{P) =s()=g()

 Un mode apériodique est un mode associé a un pole réel.

> Ai' e_pi't
P — Di

* Remarque : ce mode a l'allure d’'une exponentielle dont le taux de
croissance ou décroissance ne dépend que du pdle lui-méme.
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°“°“S & Modes apériodiques et modes oscillatoires

 Un mode oscillatoire est un mode associé a une paire de podles complexes

conjugués.
k A; A;
———=——+——= — A.e sin(wj.t)
(p+d)*+wsg P—Pi P—Pi
{—5=5R(Pi)
wo = J(Pi)

 Remarque : ce mode est constitué d’'un terme sinusoidal pondéré par une
exponentielle. La pulsation de la sinusoide est égale a la partie imaginaire
(en valeur absolue) w, des poles et le parametre de I'exponentielle est
donné par leur partie réelle —é.
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()7l @ Mode apériodique : Influence de la position du
pole sur la rapidité du mode
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Mode apéricdique

# Mode apériodique : Influence du signe du péle

sur le mode temporel
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()7l @ Mode oscillatoire : Influence de la position du
pole sur la rapidité du mode

Mode sinusoidal
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#® Mode oscillatoire : Influence du signe du pole
sur le mode temporel

Mode sinusoidal Configuration pdla—zéro
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J"U%PUSE" & Modes dominants — Poles dominants

Les poles dominants sont ceux qui sont associés aux modes
dominants (ceux qui ont donc le transitoire le plus long).

I—} IR(p;)| laplus petite

3(p)
A
P21 f-----m-m-mmmm--
STABLE |
P
P3 i
P22 T I,
poOle dominan
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Axe "imaginaire"

1ut

Oceertanie
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&3‘.’%%’?5!2 ., Poles dominants : Réponses indicielles d’un
systeme d’ordre 3
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Poles dominants : Réponses indicielles d’un
systeme d’ordre 3
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JSUVLS‘E)BSSET'E @ Addition d’un pole ou d’un zéro 2 une paire de
poles dominants

 Laddition d’'un pédle p,;; a une paire de poles dominants p,,.,
augmente le temps de montée si [p q4| < 4. IRDaom) |-

 L'addition d’'un zéro a partie réelle négative z,, a une paire de poles
dominants p,,,,, augmente le dépassementsi |z,,| < 4. |RPiom)|-

* Laddition d'un zéro a partie réelle positive z, a une paire de poéles
dominants p;,,,, diminue le dépassement mais provoque le phénomene
de réponse inverse augmentant ainsi le temps de réponse.
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JSULO‘EE'F‘ #  Exemple : Addition d’un zéro a une paire de
poles dominants

K.(1+ .Cl.a) .p)

H(p) = E p+_’; e
Hp) =- =z £ +a.;.w v K
Wy p+w121 -P* " = p+—2 p?
H(p) = Hi(p) + Ho()  Ha(p) = 77— p. i (p)
h(t) = hy(t) + hy(t) h,(£) = — ;wn | dhd1 t(t)

Remarque : Le fait d’ajouter un zéro a la fonction de transfert ajoute la
dérivée de la réponse multipliée par un coefficient égal au zéro.
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it Jg?g‘zg’fﬁg'; # Addition d’un zéro négatif 2 une paire de poles

dominants (reponse indicielle)
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ggz,ég*;fsg,ﬁ # Addition d’un zéro positif a une paire de poles
dominants (reponse indicielle)

s T T —

Amplitude
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Bi (€)ouicie g Définition de la stabilité

* Un systeme est « EBSB — stable » si et seulement si sa réponse a une entrée
bornée quelconque est bornée.

 Remarque : un signal f(t) est borné si et seulement si tous les poles de sa
transformée de Laplace F(p) sont a partie réelle strictement néegative d'ordre
quelconque ou a partie réelle nulle simple (d’ordrel).

On sait que pour un systeme :

N(p)

S@) =T®).E®) + Tei®) = 5 5 - E(@) + 2P

Dans ce cas le signal s(t) est borné si T(p) possede des poles a partie réelle
negative.
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i (€)so0icte Critére mathématique de stabilité

* Ce critere concerne les systemes asservis ou non asservis.
* Dans ce cas on suppose connaitre explicitement les poles p; de T(p).

D(p) =0 = Py i=1-m)

« Définition : Ce systéme est stable, si les poles p; de T(p) sont tous a
partie réelle négative.

Inconvénients du critere mathématique::
* On doit connaitre explicitement les pdles p; de T(p).

* Le calcul de péles p; peut devenir compliqué si 'ordre augmente.
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31i (C)w0cii @ - Critere algébrique de stabilité : Critére de

Routh
* Ce critere concerne les systemes asservis ou non asservis.
NPT . . N
« Dans ce cas on suppose connaitre I'expression analytique de T(p) = %.

Dp)=a,.p"+a, 1.p" 1+ -+a.p+ag

« Condition Nécessaire:

Tous les coefficients a; du polynédme D(p) doivent étre de méme signe et non
nuls.

Remarque : Dans le cas contraire le systeme est instable.
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Critere de Routh - Table

* Le nombre de ligne de la table de Routh : nb; = 9°(D(p)) + 1

N
Qg | e 3, a
> | L Coefficients de D(p)
Qg V[ s 3, )
\
b3 ...............
1¢re colonne
Cy | e
\l Coefficients calculés
5

* Condition Nécessaire et Suffisante :
Le systeme sera stable si tous les éléments de la premiere colonne de la
table Routh sont de méme signe.

Remarque : Le nombre de pdles a partie réelle positive est égale au nombre de
changement de signe dans cette premiere colonne.
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Bi () o0iciee e Table de Routh : calcul des coefficients

1°"® Colonne i—1 | i"™Col | i+l
P, Pi_1 P Pit1
d, Qi1 oF Qi1
ri—1 ri
B D1 - D1
ri-1 =Pi —4qi-— ri=DPi+1 —qi+1-—
q1 q1

Inconvénient du critéere algébrique :

N®)

* On doit connaitre I’expression analytique de T(p) = Do)
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nbl=3+1 I
10

itanie

D(p)=p°+6p°+11p+6

1¢re colonne

(@)

(@))
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Critere de Routh : Exemples

CN : Vérifiée

11 O |coefficients
6 0 de D(p)

0 Coefficients
0 calculés
STABLE
p1=—3
P2 = —2
ps = —1

D(p)=p*+2p°+ p*+4p+4

nbl=4‘+1
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CN : Vérifiée
1111 (4|0 Coefficients
2|40 |o]| PP
—~
1) 4
N—1

Coefficients
12| O calculés
4
(¢b)
=
: INSTABLE
(@)

(@)
§ iciilya 2 poles a

partie réelle positive
.

.

p; = 0,5 + 1,32.)
Pa=05-132.] 55




PAUL SABATIER

$g¢,{gs,g'g,ﬁi Critere de Routh : Exemple sur un systeme

asservi
E(p) +, &) K S()
_ p{l + 10p) oy 2 S®) __ KO+
51 (p) " PP7E® " K+p+1ip? + 10p3
M 1 -
1+0p
10 - Coefficients
D(p) = 10p3 +11p* +p+ K 11 || K de D(p)
1- k&1 o .
11 Coefficients
CN : Vérifiéesi K >0 K 0 calculés
nb, =3+ 1 S STABLE
g_? pour 0 < K < %
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OU%PUSE & Critere graphique de stabilite : Critere du
revers

« (e critere concerne uniquement les systemes asservis qui possedent une
fonction de transfert de boucle B(p) ayant des poles et des zéros a partie

réelle négative.
 Ici on suppose connaitre le tracé de B(p).

E(p) +, () T(p) S®)
o (P) To(p) |«<—
S T1(p) _Su(p)
TP =) "1+ Ti). T Bp) =~y =1 T2(@)
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bli (C)0cii @ Critere graphique de stabilité : Critére du
revers

* La stabilité du systeme asservi T(p) ne dépend que des racines de I'’équation
1+T1(p).T2(p) =00uB(p) = —-1.

* Le point —1 porte le nom de point critique.

« Dans ce cas, il est nécessaire de tracer la fonction de transfert de boucle
B(j.w) dans le plan de Bode ou de Nichols et de regarder son
positionnement par rapport au point critique (—180°; 0dB).
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"“%?“SE & Critere du revers dans le plan de Bode

A
Agp(w)
Agp(w_1g0°) >0
od8 o log (@) _
| | |
Tracé de a (a) E) - : : Instable
B(j. w) A 4B _1800, | | Limite de stabilité
o I | I
»*() | wW_4g0° | Stable
T : - : >
| | | log(w)
| | |
|
0°(wy) > —180° f-———————mmmm e <o i
—180° {=——— === TS i
@°(01) < —180° {——————=———————m—mmm——mmmm T

« Définition : Le systeme asservi T'(p) est stable, si la fonction de transfert

} , ¢°(wq) > —180°
de boucle B(j. w) vérifie : .
U-®) {AdB(w—180°) <0dB
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Y (S3)0is0ec Critére du revers dans le plan de Nichols

o A
-180
Agp(w)
a)O
. @, i
Point critique 0, °
Tracé de S
B(j. ) 0dB ¢°(w)
Instable
Stable

Limite de
stabilité

« Définition : Le systeme asservi T(p) est stable, si en parcourant le lieu de
transfert de boucle B(jw) dans le sens des pulsations croissantes, on laisse
le point critique (—180°; 0dB) a droite.
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811 (€)so0istec Marges de sécurité

« Remarque : Le systeme asservi T(p) doit étre impérativement stable

malgré :
» des fluctuations sur les parametres,
» des incertitudes d’identification.
Marge de gain:
1
My = ou My, =—Aap(w_1g80°)
A(w-_1g0°) a8

* On appelle w_1g¢- 1a pulsation pour laquelle le déphasage de boucle est égal a
— 180°.

* A(w_q1g0°) est donc le gain linéaire de boucle pour la pulsation w_qgg- et
Agp(w_1g0°) le gain logarithmique de boucle pour cette pulsation.

* M, correspond a I'augmentation du gain linéaire de boucle pour amener
le systéeme asservi a la limite de stabilite.

* My, correspond au gain logarithmique de boucle a ajouter pour amener

le systéeme asservi a la limite de stabilite.
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i () souisiaes o Marges de sécurité

Marge de phase:
M,. = 180° + ¢°(wq)

* On appelle w la pulsation pour laquelle le gain linéaire de boucle est égal
a1 oule gain logarithmique de boucle est égal a 0dB.

 @°(wq) estdoncle déphasage de boucle pour la pulsation w.

* M. correspond au déphasage supplémentaire pour amener le systeme

asservi a la limite de stabilité.

* Remarque:
» SiMy,, et M, sont positives le systeme asservi est stable..

» SiMy,, et M, sont nulles le systeme asservi esta la limite de
stabilité.
» SiMy,, ouM ,- est négative le systéeme asservi est instable..
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0“%,0“55 & Marges de phase et de gain dans le plan de
Bode

Agp(w) 4

0dB

Agp(w_1g0°) ~
o A

P°(w)

OO

@°(wq)~
~180_

Mye = ¢°(w;) — (—180°) M. = 180° + ¢°(w1)

My,, = 0dB — Agp(w_150°) My,, = —Aqp(®w_180°)
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OU%,OUSE & Marges de phase et de gain dans le plan de
Nichols

A

~180°  ¢°(w,)

Agp(w)

0dB >
¢°(wy)

" Agp(W_150°)

Mye = ¢°(w;) — (—180°) M. = 180° + ¢°(w1)

My,, = 0dB — Agp(w_150°) My,, = —Aqp(®w_180°)
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OULSOUSE & Détermination graphique du gain K;;,,

tracé pour la valeur

AdB(w) 0 Kiim
0dB log(a))
MAdB
Agp(W_1g0°) T~~~ ~~~~—~—~~~~~""~particuliere de K~~~ "~~~ |
|
¢°(w) i W_180°

20.log(K)+MAdB

20.10g(Kjim) = 20.log(K) + My, = Kj;;,,=10 20
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Influence de la variation du gain Kz et du

déphasage ¢°(w) sur la stabilité du systeme

bouclé

A

o AdB ((,())

A
e Kp 7 Agp(w)
o e(w)
0dB
P°(w)
0dB
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UNIVERSITE

* Toute augmentation du gain de boucle engendre :
» une diminution de la stabilité,

> et dans certains cas a une instabiliteé.

* Toute diminution du déphasage de boucle engendre :

> une diminution de la stabilité,

> et dans certains cas a une instabilite.
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PAUL SABATIER

%’8&{86@'&5 & Plan de Nichols et Abaque de Black
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LT’S:JVLSBSS';.:% 4= Détermination du gain statique K¢

PAUuL SABATIER .

| . g ( Do
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ouous Détermination de wpg €
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e Pour déterminer , il faut .
chercher a quelle courbe iso-gain
le lieu de transfert de boucle est .
tangent.
 Pour déterminer , 1l suffit
de lire la valeur du gain sur cette ..
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PAUuL SABATIER .

%’8&{8&2';.:% 4= Determination de la pulsation w_gg4,

* Pour déterminer w_g,5 (pulsation .,
pour laquelle le gain vaut
Azp(0) —6dB =0 — 6dB =
— 6dB) dans notre cas, il suffit
donc de rechercher l'intersection  +-
du lieu de transfert de boucle avec ...
la courbe iso-gain —6dB ; ce
point détermine la pulsation
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