CHAP 9 - INTERRUPTIONS
Informatique Embarquée
S2 2020- 2021
GEIl - Toulouse III

A. Nketsa

Interruptions 2 A. Nketsa

Les interruptions

1- Définition

Une interruption est un mécanisme de prise en compte et de traitement de demande d'urgence dans un
systéme a microprocesseur. Pour cela, le microprocesseur ou microcontroleur dispose des entrées dédiées
pour cette demande d'urgence.

2- Mécanisme
1- Un programme est en cours d’exécution,
2- une demande d’interruption survient
3- le microprocesseur termine 1’instruction en cours
4- le microprocesseur sauvegarde le point de retour
4- le microprocesseur va répondre a la demande en exécutant le traitement correspondant
5-ala fin du traitement de la demande, le microprocesseur reprend éventuellement le programme
interrompu en récupérant le point de retour sauvegardé.

3- Rappel du fonctionnement simplifié d’un processeur pour comprendre les

interruptions
Le fonctionnement d'un processeur est basé sur l'exécution d'un programme stocké comme une succession
d'ordres (instructions) dans une mémoire.
Pour réaliser ce fonctionnement, le processeur a besoin entre autres :
& d'un compteur programme (encore appelé pointeur d'instruction) qui :
- s'incrémente pour assurer la nature séquentielle du programme
- contient 1'adresse de la case contenant le code de la prochaine instruction & exécuter a la fin de
l'instruction en cours.
& d'une zone mémoire (appelée Pile) pour les sauvegardes temporaires et gérée par un registre appelé
pointeur de pile qui indique I'emplacement pour cette sauvegarde.

Conclusion

Application a I'exécution d'une fonction :
2 étapes :

- l'appel de la fonction

- le retour de la fonction

Pour exécuter une fonction,
Au moment de I'appel de la fonction
- le processeur - sauvegarde sur la Pile I'adresse de retour
- charge 1'adresse de début de la fonction dans le compteur-programmre
- le processeur peut alors exécuter le code de la fonction
- la fin de la fonction correspond au retour au programme qui a appelé la fonction
Pour cela, le processeur charge le compteur-programme avec l'adresse de retour récupérée de la pile.

Appel :
- Sauvegarde de 0x101 sur la Pile Fin de la fonction = Retour
- Chargement de 0x50 dans le compteur programme

- Récupération de 0x101 sur la pile

void xyz(void) - Chargement de 0x101 dans le

{ Programme en cours) . compteur-programme
) mam - A 0x050 V{Old xyz(void) - Reprise de main 4 la ligne 0x101
void main(void) | 0x100 + xyz()" E
t 0x101 1w __ !
. ">~Y— (x60 }Fin fonction
xyz();
- A
}

Interruptions 3 A. Nketsa

4- Analogie de fonctionnement
Nous allons faire 1’analogie entre la lecture d’un journal et la réponse a un appel téléphonique pour illustrer les interruptions :

Vous

Le uP en général

Le uC C167

1- vous branchez votre téléphone

1- autoriser la prise en compte des demandes d’urgence

2 niveaux d’autorisation
Plusieurs sources de demandes d’urgence (ou
demandes d’IT)

2- vous lisez le journal
Evolution des pages et lignes

2- un programme est en cours d’exécution = passage en revue des lignes du
programme (évolution du compteur programme)

Fonctionnement normal du processeur

3- le téléphone sonne

3- une demande d’urgence survient

Une ou plusieurs source d’urgence autorisées
font leur demande

4- vous terminez la lecture de la ligne
en cours

4- le processeur termine 1’instruction en cours

Le C167 termine I’instruction en cours

5- vous sauvegardez les numéros de la
page en cours et de la ligne suivante

5-le processeur sauvegarde le numéro de la ligne (compteur programme)
contenant la prochaine instruction a exécuter (On I’appellera I’adresse de
retour)

Le C167 sauvegarde sur la Pile le contenu du
compteur-programme.(adresse de retour)

6- vous allez répondre au téléphone

6- le processeur
- interdit les demandes d’urgence
- charge dans le compteur programme 1’adresse de début du programme
de traitement de la demande
- commence 1’exécution de ce programme de traitement

Le C167:

- interdit les interruptions

- arbitre entre les différentes demandes

- choisit la source plus prioritaire pour le
traitement associé. (chargement dans le
compteur_programme de 1'adresse de la
fonction de traitement de la source) et
dévut exécution du programme de
traitement.

7- conversation

7- traitement

Traitement effectif

8- a la fin de la conversation :

-s’il n’y a rien de grave, vous revenez
continuer la lecture en récupérant la
page et la ligne mémorisées

- si la situation est grave, vous partez en
courant.

8- a la fin du traitement :
a) si le traitement considére que le programme suspendu peut reprendre
alors le processeur
- récupere I’adresse de retour,
- charge celle-ci dans le compteur programme
et le programme suspendu peut reprendre comme si rien ne s’est passé.
b) si le traitement considére que le programme suspendu ne doit pas
reprendre alors le programme suspendu ne s’exécutera plus.

Retour spécial au programme suspendu

- autorisation des IT

- récupération de 'adresse de retour sur la pile
et chargement dans le compteur-programme

- reprise éventuelle du programme suspendu

5- Relation avec une fonction classique

Une fonction classique est appelée dans un programme

Une fonction pour le traitement d'une interruption n'est pas appelée dans un programme mais son appel
automatique est déclenché par une demande d'urgence.

void xyz(void) Programme en cours
{ main 7 0x050 void traite_it(void) interrupt n°x
0x10 ——» demande “ E {
} urgence '
0x11 —Tw. '
void main(void) e . '
{ I :
- *—Y¥— 0x60 }Fin fonction interrption
] L2
H la fonction traite_it n'apparait pas dans le main
C'est la demande d'urgence qui déclenche automatiquement son exécution.

6- Application aux interruptions du microcontroleur C167
Le microcontréleur C167 dispose de 56 sources d'interruptions (IT = interruption).

6-1 Sources des interruptions et conditions de déclenchement
Les sources peuvent tre organisées de plusieurs fagons.
On peut avoir :
- des sources externes. Ce sont des broches d'entrée dédiées peuvent étre sont réservées pour les demandes
d'interruption; Ces sources externes sont réparties aussi entre sources rapides et sources lentes. Les
sources rapides sont celles pour lesquelles la prise en compte est trés rapide.

- des sources internes. Ces sont des signaux produits par des composants intégrés dans le microcontréleur
comme les fin de comptage/décomptage des Timers.

Nous n'en traiterons que quelques unes. C'est le principe qui nous importe.
Pour les sources externes
Une source externe rapide déclenchée sur P2.8
Une source externe rapide déclenchée sur P2.9
Une source externe rapide déclenchée sur P2.10

La condition de déclenchement de chacune de ces sources est programmable dans le registre EXICON

Registre EXICON
Source |P2.15 P2.14 P2.13 P2.12 P2.11 P2.10 P2.9 P2.8
Nom bit | EXI7TES |EXI6ES |EXISES |EXI4ES |EXI3ES |EXI2ES |EXIIES |EXIOES
| | | | | F1 [FO |F1 [F0 [FI [Fo
F1 FO
0 0 mode standard des IT pour I’entrée correspondante
0 1 front montant
1 0 front descendant
1 1 front montant et front descendant
Pour les sources internes
Fin Timer T3 T3IR
Fin Timer T6 T6IR

La condition de déclenchement de chacune des sources est un front montant du signal (TxIR) de la source
correspondante.

6-2 Autorisation des interruptions

Le C167 offre 2 niveaux d'autorisation des interruptions.

Le niveau global indiqué par la valeur du bit IEN
aucune interruption ne peut étre prise en compte
les sources d'IT autorisées individuellement peuvent étre prises en compte si les conditions
de déclenchement sont satisfaites.

IEN= 0
1

Le niveau individuel

Chaque source dispose d'un bit de la forme XXIE qui permet d'interdire ou d'autoriser l'interruption.

P2.8

P2.9

P2.10

Fin Timer T3
Fin Timer T6

bit CCRIE
bit CCIIE
bit CCI0IE
bit T3IE
bit T6IE

6-4 Notion de priorité
Puisqu'il y a plusieurs sources et que le microcontroleur ne peut traiter qu'une seule source, s'il y a plusieurs
demandes d'IT en méme temps, le microcontroleur doit choisir a traiter la source la plus prioritaire. Pour
cela, on peut programmer le niveau de priorité de chaque source.

Le niveau de priorité est un nombre binaire de 6bits organisés en deux groupes :
-un groupe ILVL de 4bits (poids fort)
- un groupe IGVL de 2bits qui définit la priorité dans un groupe ILVL (poids faible) priorité inter-groupe

Chaque source d'IT dispose d'un registre de priorrité : XXIC ayant la forme générale

Nom du registre = XXxIC

priorité intra-groupe

15 8 7 6 514[3] 2 1 | o
CCxIR CCxIE ILVL GLVL

Mémoire | Autorisation/interdiction | Priorité de Priorité dans
demande demande groupes le groupe

P2.8 registre de priorité CCgIC

P2.9 registre de priorité CCIIC

P2.10 registre de priorité CCl101C

Fin Timer T3 registre de priorité T3IC

Fin Timer T6 registre de priorité T6IC

Régles de priorité :
1- Si aucune source d'IT n'est en cours de traitement, alors la source la plus prioritaire est celle ayant le
nombre binaire de 6bits (ILVL - IGVL) dont la valeur décimale est la plus élevée parmi les sources
ayant fait la demande en méme temps.

2- Si une source est en cours de traitement alors la demande la plus prioritaire est celle ayant le plus grand
ILVL la source en cours comprise. Dans ce deuxiéme cas, les interruptions doivent étre ré-autorisées
dans le programme de la source en cours.

De méme, dans ce deuxiéme cas, les sources ayant le méme ILVL ne peuvent pas s'interrompre.

6-5 Mécanisme de prise en compte des interruptions
Chaque source d'IT posséde un bit de mémorisation de la demande sous la forme xxIR.
Ce bit est a mis 1 lorsque les conditions de la demande sont satisfaites.
Lorsque le pC se branche sur la source d'IT la prioritaire, il met aussi automatiquement a 0 le bit xxIR de
mémorisation de la demande de la source.

Interruptions

A. Nketsa

6-6 Adresse des fonctions de traitement des

Table de quelques IT utiles pour les TP
La table des vecteurs d'interruption permet d'associer a chaque source d'interruption mise en oeuvre l'adresse
de la procédure d'interruption correspondante.

sources Adresse | Numéro Bit dem/Autoris | Registre IT | Registre
vecteur | vecteur ILVL,GLVL | condition
Rapides P2.8 (EXO0IN) [0060H |18h CCBIR/CCBIE CC8IC EXICON
P2.9 (EX1IN) [0064H |1%h CCIIR/CCBIE CCIIC EXICON
Timers
Timers GPT1 | T3 008ch 23h T3IR/T3IE T3IC Fin cpt/dcpt
Timers GPT2 | T6 0098h 26h T6IR/T6IE T6IC Fin cpt/dcpt

7- Programmation
Un programme fonctionnant sous interruptions possede :
- un programme principal
- autant de fonctions de traitement des interruptions que de sources d'IT a mettre en ceuvre

7-1 Structure d'une fonction de traitement d'interruption
Remarques préliminaires :
1- Une fonction de traitement d'interruption :
- ne retourne pas de valeur
- n'a pas de paramétres formels car, I'appel est automatique et peut survenir a n'importe quel moment.

D'ou la forme void traite_interruption(void)

2- On doit indiquer au compilateur l'adresse ou la fonction doit étre implantée pour €tre appelée
automatiquement. Pour cela, chaque source possede un numéro d'IT (cf table ci-dessus) et on utilise le
mot réservé interrupt pour signaler ce numéro

D'ou la forme void traite_interruption(void) interrupt numero IT
{ //variables locales

//Corps du traitement d'IT
}

3- Le programme de traitement d'IT :
- doit étre le plus court et rapide possible
- ne doit pas comporter des boucles non maitrisées

4- Les échanges avec les autres programmes se font en utilisant des variables globales.

A. Nketsa

Interruptions 7

7-2 Structure du programme principal avec des interruptions
Nous allons donner la structure de ce type de programme principal sous forme d'organigramme

Initialisation des périphériques
- Port Entrées-sorties
- Timers
- Autres

v

Initialisation des variables

v

Autorisation individuel des IT

v

Autorisation globale (IEN =1)

P

Tache de fond

A

Exemple d'application

On souhaite réaliser un systéme permettant de faire fonctionner en méme temps :

- la prise en compte par interruption rapide sur front montant d'un poussoir branché sur la broche P2.8.

La fonction de traitement sera l'affichage du message "IT Externe rapide P2.8"

- génération d’une rampe de pente 1 sur le CNA3.

- un chenillard a vitesse variable par pas de 250ms. Le facteur de vitesse est lu sur les 8bits du port P2.
Le chenillard est de 8bits sur le port P8
La base de temps pour la vitesse du chenillard sera obtenue par interruption du timer T3

- une horloge avec affichage sur la console en utilisant une base de temps générée par le Timer T6

Dans le programme principal
On aura une boucle infinie dans laquelle
& on recopie - les 8 bits de poids faible le port P2 sur le port P7
- le CANO sur le CNA1
& tous les caractéres tapés au clavier sont re-affichés sur la console.

Séquence des IT

pos)
T

1T

T6IR /

suspension PP ;
traitement P2.8 |
' suspension PP

traitement Timer T3

-

Notion de priorité
Les demandes sont mémorisées
La plus prioritaire s'exécute (P2.8)

suspension PP
traitement Timer T6

| -Chenillard - horloge Puis Timer T3 (décalage)
! (un décalage (comptage seconde Enfin Timer T6 (Hotloge)
i gestion fin minute

| décalage) heure)

Interruptions 8 A. Nketsa

Les traitements des IT

Traitement_P2_8

"n\r IT externe rapide P2.8\n\r" —* msg+ball]

v

printf

v

traite_timer_T3

T

Vitesse =vitesse -1 | Vitesse = mem_vitesse |

| chenillard = chenillard << 1

chenillard=0

| chenillard = 0X01 |

|
!
| P8 = chenillard |
|

Interruptions

A. Nketsa

traite_timer_T6

| drapeau_aff=1 |
|

| (seconde)++ |

O seconde-s0 =

| seconde = 0 |

| (minute)++ |

O=mnve-s0

| minute = 0 |

| (heure)++ |

| heure = 0 |

Initialisation
Sens des Ports P2, P8

Timers T3, T6

Les variables

Interruptions

Priorité

CCBIC =

T3IC

T6IC

//Autorisation

// P2.8 EXICON
// Timer T3 T3IE

// TImer T6 T6IE

//Autorisation globale IEN

Interruptions 10

A. Nketsa

Programme principal
Initialisation
Lancement des Timers

Boucle infinie

{

Interruptions 11 A. Nketsa

