Polycopiés (suite)
Cours Informatique embarquée

GEII Toulouse 2020-2021

A. NKketsa

CHAP 6 Les entrées-sorties numériques d'un systeme a base de
microprocesseur

1- Approche intuitive
Un microcontroleur permet de :

- contrdler un environnement
Cela signifie surveiller = lire les capteurs qui renseignent le pC sur I'environnement
qu'il doit surveiller.

- commander a un environnement
Cela signifie donner des ordres a des dispositifs

Exemple

On dispose de 2 interrupteurs (interQ et interl) pour commander une lampe de la fagon suivante :
- inter0 = 1 permet d'allumer la lampe
- interl = 1 permet d'éteindre la lampe si inter0 est a 0

Une analyse simple de cet exemple montre que :
lorsque inter0 =1 alors la lampe s'allume

la lampe reste allumée méme lorsque inter0 retombe a 0 et interl =0
Conclusion :
< il y a une mémoire qui conserve I'état de la lampe apres I'action de inter0
& Comme nous sommes en ¢lectronique numérique : cette mémoire est une
bascule D

lorsque interl passe a 1 et inter(est a 1 alors la lampe reste allumée

lorsque inter] passe a 1 et inter0 est a 0 alors la lampe s'éteint

Bilan de cet exemple

< Inter0 et inter]l sont des entrées pour le microcontroleur (renseignent le uC) : controle

@]la lampe est une sortie (par laquelle le pC (donne des ordres) : commande
. A < inter0
Microcontroleur ‘ { Controle
< interl
Programme | variable
v > —> lampe} Commande

L'organigramme du programme pourrait étre :

| Eteindre la lampe

A 4

Lire inter] et inter0

Mémoire de la lampe

| Allumer la lampe

| éteindre la lampe |

Conclusion

Le nC dispose
- des interfaces d'entrée pour convertir les informations d'entrée & mettre a sa disposition
quand il en a besoin
o comme on se met a la place du pC, on dit que le pC lit les interfaces d'entrée

- des interfaces de sortie pour convertir les informations binaires envoyées par le uC vers
les éléments & commander.
o comme on se met a la place du uC, on dit que le uC écrit sur les interfaces de
sortie

- plus généralement des interfaces d'entrée-sortie qui intégrent les 2
types d'interfaces. Dans ce cas,
o on doit choisir la direction de l'interface :
= soit en entrée
" soit en sortie

o on peut relire la derniére valeur écrite sur le port de sortie si
celui-ci a été programmé en sortie.

o il est conseillé que les bits non utilisés du port soient en entrée

€ Inters ") o
lecture =
< Interface d'entrée € capteurs L =
o
4 clavier ©
/
Lampes ©y @
. A —> p
Microcontroleur écriture :%
> Interface de sortie ~ [—> Moteurs g
|, Ecran 3
lecture l«— capteurs]
- Interface
écriture d'entrée — sortie sortie
> |, Ecran

Remarque :

En TP, nous utiliserons les interfaces d'entrée-sortie

Définitions et vocabulaire

& Interface d'entrée
Définition :

Une interface d'entrée est un dispositif qui met a la disposition du microprocesseur
quand il en fait la demande des données présentes sur les entrées de l'interface au
moment de la demande.

A retenir :
L'interface d'entrée ne mémorise pas d'information.
Elle ne peut étre que lue.

Elle fournit I'information au microcontroleur uniquement au moment ou celui en
fait la lecture
Vocabulaire :

L'interface d'entrée est aussi appelée port d'entrée ou simplement entrée

= Interface de sortie
Définition

Une interface de sortie est un dispositif qui met a la disposition des périphériques
lents la donnée que le microprocesseur présente de fagcon bréve sur le bus de
donnée.

A retenir :

L'interface de sortie mémorise la derniére donnée écrite.
Elle est constituée de bascules D
Elle ne peut pas étre lue.

La derniére information &crite sur le port de sortie est mémorisée

Vocabulaire :

L'interface de sortie est aussi appelée port de sortie ou simplement sortie

& Interface d'entrée-sortie
Définition :

Une interface d'entrée-sortie est un dispositif qui contient a la fois une
interface d'entrée et une interface de sortie qui se partage les mémes broches
d'entrée-sortie.

Dans ce type d'interface, on ajoute une bascule pour choisir la direction de la
broche.

A retenir :

1- On choisit la direction d'une broche en écrivant dans le
registre de direction.

2- Lorsque l'interface d'entrée-sortie est configurée en entrée,
- 1l n'y a pas de mémorisation de I'information d'entrée

- le uC lit I'information présente sur le port d'entrée au
moment de la lecture

- une écriture sur un bit configure en entrée n'a pas d'effet.
1- Lorsque l'interface d'entrée-sortie est configurée en sortie,

- la derniére information écrite est mémorisée,

- la derniere information €crite peut €tre lue.

4- Une interface d'entrée-sortie non utilisée doit etre configurée
en entrée par souci de protection des sorties

Interface fonctionnelle

| Entrée

Une interface fonctionnelle est constituée de 2 byg de .

arties : donnée T Fonction <—
p T , . cmdel

- une partie est en entree-sortie B Exemples

D | -TIMERS
cmde2 CK Q Sortie | _pwm |y

Nous reviendrons sur cette structure un peu plus tard Bascule -CAN

- une partie est fonctionnelle

Application au microcontroleur C167
Le microcontroleur C167 possede plusieurs ports d'entrée-sortie intégrés. Mais nous n'utiliserons
que les suivants :

- le port P2 de 16bits

- le port P3 de 13bits (ce port est multifonction)
- le port P7 de 8bits (ce port est multifonction)
- le port P8 de 8bits

Chaque port possede :
- un registre de donnée (en entrée ou en sortie selon la direction) nommé Pi comme le port

- un registre de direction qui permet de programmer la direction du registre de donnée nommé
DPi

Chaque bit de chaque port est indépendant.
Nous noterons dans un premier temps Px.y le bit y du registre de donnée du port Px..
DPx.y le bit y du registre de direction du port DPx.
Chaque bit d'un port peut étre programmé en entrée ou en sortie en fixant DPx.y
DPx=0 port en entrée c'est I'état a l'initialisation du processeur
DPx=1 port en sortie

On peut programmer plusieurs bits d'un port avec des directions différentes.
Pour cela, il suffit d'utiliser les masques.

Rappel:
1- L'interface d'entrée-sortie mémorise la derniére donnée écrite.

2- On choisit la direction d'une broche en écrivant dans le registre de direction.
3- L'interface peut étre lue et écrite si elle est configurée en sortie

- la derniére information écrite est mémorisée,

- la derni¢re information écrite peut étre lue.
4- Si l'interface est en entrée, 'écriture sur l'interface ne change rien.

5- Une interface d'entrée-sortie non utilisée doit étre programmeée en entrée par souci de
protection des sorties

Programmation en langage C

Le compilateur du langage C du microcontroleur C167 connait tous les ports intégrés, P2, P3, P7 et
P8 et leurs registres de direction DP2, DP3, DP7 et DPS.

Les registres de donnée et de direction sont bit-adressables. C'est-a-dire que chaque bit de ces
registres est directement accessibles et manipulables. Nous n'utiliserons pas cette possibilité pour
les ports d'entrée-sortie. Nous préférons les masques

Séquence de programmation

Pour programmer un systéme avec des ports
d'entrée-sortie, on doit respecter la séquence ci-
contre :

Programmer le sens des ports

A 4

- le sens des ports est programmeé une seule fois

Exploitation des ports

- L'exploitation fait partie de la boucle du
programme principal.

Langage C (suite 4)
(Utilisation des masques en informatique embarquée)
- Principe général
- Gestion des capteurs
- Actualisalisation des sorties
En informatique embarquée, les capteurs et les acyionneurs binaires sont souvent regoupés pour
formés des mots (octet ou mot de 16bits)
Lors de l'utilisation, on a souvent besoin de ne tester ou manipuler qu'un ensemble de ces bits.
Pour cela : il faut les isoler pour les manipuler

Nous avons vu lors des instructions logiques que I'on peut isoler un ou plusieurs bits dans un mot,
de méme en utilisation les instructions booléennes on peut tester ces bits

Rappel
Pour isoler les bits ,
- on construit un masque en ET
- et on effectue 1'opération logique ET (&)

Pour tester les bits isolés,
- on construit un masque avec la valeur attendue des bits a tester
- on effectue une comparaison entre le résultat des bits isolés et le masque des valeurs
attendues

Pour mettre des bits a 0
- on construit un masque en ET des bits a mettre a 0
- on effectue un ET logique (&) entre le mot et le complément a 1 (~) du masque en ET

Pour mettre des bits a 1
- on construit un masque en ET des bits a mettre a 1
- on effectue un OU logique (|) entre le mot et le masque en ET

Pour compémenter des bits a 1
- on construit un masque en ET des bits a complémenter
- on effectue un OUexI (*) entre le mot et le masque en ET

Gestion des capteurs

Considérons que nous avons un octet qui regroupe : les capteurs, les interruopteurs et les poussoirs

d'un systéme occupant dans I'octet les positions suivantes :

Variable : octet entree

poussoirs interrupteurs capteurs
B7 B0
Poussl Pouss0 Interl Inter0 C3 C2 Cl Co

On admet que les capteurs sont actifs a 0

Gestion des actionneurs

Considérons que nous avons un octet qui regroupe : les actionneurs d'un systéme occupant dans

l'octet les positions suivantes :

Variable : octet sortie

pOoussoirs interrupteurs capteurs
B7 B0
buzzer siréne moteurl moteur0 Led3 Led2 Ledl Led0
On admet que les actionneurs sont actifs a 1
Exercice
si c2=0 et interO=1 et poussO =0
alors allumer la Led2
sinon eteindre la led2 et complémenter la led3
Donc il faut isoler les bits C2, interQ et poussa dans octet entree
b7 b0
Pouss1 PoussO | Interl Inter0 C3 C2 Cl Co
Masque en ET (isolement) 0 1 0 1 0 1 0
Msk isole
Masque valeur attendue 0 0 0 1 0 0 0 0
Msk attendu
- masque en ET : 01010100b = 0x54
- masque de test : 00010000b = 0x10
Pour allumer la led2 sans modifier les autres, il faut construire le masque correspondant
b7 b0
buzzer | siréne | moteurl | moteur(| Led3 | Led2 | Ledl | Led0
Masque en ET pour mise a 1 0 0 0 0 0 1 0 0
led2 (msk led2)
Masque pour complémenter 0 0 0 0 1 0 0 0
led3 (msk led3)

D'ou le programme

Temp = octet entree & msk isole
4O<Temp = msk_attendu

octet_sortie = octet_sortie ET (msk led2) octet sortie = octet_sortie OU msk led2

octet_sortie = octet _sortie OUExcl msk led3

Traduction en langage C
Temp = octet_entree & msk_isole;
if (Temp == msk_attendu)

{

octet sortie = octet sortie | msk led2;

}
Else

{

octet sortie = octet sortie & (~msk_led2);
octet_sortie = octet sortie * msk led3;

}

Exemples d'application
Exemple 1

On veut écrire un programme qui recopie 1'état de 8 interrupteurs connectés sur les bits 7 a 0 du
port P2 sur les 8leds branchés sur le port P8 jusqu'a ce que P7.7 soit égal a 0

a) Donner I'organigramme basé composant de ce programme
b) Traduire cet organigramme en langage C.

Dessin du probléme

Les interrupteurs doivent étre lus par le pC.

Donc ils sont connectés a des entrées

Les leds doivent étre commandées pour les

allumer ou les éteindre. Elles sont connectées

sur les sorties

P2.7-P2.0

P8.7-P8.0

P7.7

Analyse
Bilan :

P2.7aP2.0 doivent étre programmés en entrée
P8.7 a P8.0 doivent étre programmeés en sortie

P7.7 doit étre programmé en entrée

1- lire I'état des interrupteurs

2- écrire le résultat sur les leds pour le visualiser

3- recommencer en 1- si P7.7 =0
4- Boucle infinie pour contrdler le pC

Organigramme

=> lecture du port P2 (bit 7 a 0)
=> ¢criture sur le port P8 (bit 7 a 0)

Compléter
l'organigramme ci_contre

a) Organigramme

P2 en entrée
P8 en sortie
P7 en entree

| P8 = P2

:

¥
| temp = P7 & 0x80 |

b) Traduction en langage C
unsigned char temp;

DP2 = P2 & 0xFF00;
DP8 = OxFF;
DP7 = 0x00; // DP7 =DP7 & 0x7F;

Temp = P7 & 0x80;

§
while (temp == 0x80);

while (1):

Exemple 2
On veut écrire un programme qui réalise la fonction logique F=10.11 + 12.13 +10.12.
F sera visualisée sur la led branchée sur P8.0
10, 11, 12 et 13 sont interrupteurs connectés respectivement sur les bits P2.0, P2.1, P2.2 et P2.3
Le programme fera ce calcul tout le temps.

Donner l'organigramme basé composant de ce programme
Traduire cet organigramme en langage C.

Dessin du probléme

Les interrupteurs doivent étre lus par le pC. Donc ils sont

connectés a des entrées P2.3 - P2.0 4—47L¥§

Les leds doivent étre commandées pour les allumer ou les PS.0 _>®_§
¢teindre. Elles sont connectées sur les sorties

Analyse
Bilan : P2.3 aP2.0 doivent étre programmeés en entrée
P8.0 doit étre programmé en sortie

La fonction a réaliser est une fonction logique combinatoire. On doit donc utiliser les instructions
logiques.

Remarque importante :

Le calcul logique se fait bit a bit sans report => il faut amener tous les bits de calcul a la méme
position binaire par des opérations de décalage. Pour cela, nous allons utiliser des variables pour
garder chaque bit a la position 0

1- lire le port P2 et ne conserver que les bits 3,
2,1,0 |u=|0|0|0|0|l3|l2|l1|I0|

2- bit0 = garder le bit 0
it0 = garder le bi bit0=|0|0|0|0|0|0|0||0|

2- bitl = amener le bitl a la position 0
i1 =Lolololololololn]

3- bit2 = amener le bit2 a la position 0 |
bit2 = 0|0|0|0|0|0|o||2|

4- bit3 = amener le bit3 a la position 0 |
bit3 = 0|0|0|0|0|0|0||3|

5- Calcul de la fonction logique
bitr = (bitl & bit0) | ((~bit2) & bit3) | ((~bit0) & bit2)

Organigramme
P2 en entrée
P8.0 en sortie
| lu = P2 & OxOF |
v
| bit0 = lu & 0x01 |
v

[bitt = (u & 0x02)>> 1 _|
v

| bit2 = (lu & 0x04) >> 2 |

v

| bit3 = (lu & 0x08) >> 3 |
v
bitr = (bit1 & bit0)
| ((~bit2) & bit3)
| (~bit0) & bit2)
v

| P8 = bitr |

Traduction en langage C

Exemple 3 Gestion de tri de pieces par couleur sur un tapis roulant

Remarque:

Cet exercice sera traité en TD et en TP.
Station de Tri couleur

i i Cmd stoppeur
Cmd_switch2 Cmd_switch1

P

v v - v 7

> < Iz .
4) .
Gliss_pleineb (4)) g P_nonnoireb (3)
p_presb (1) (2)
P_métalb(2)

Zone de Stockage

. . actionneurs capteurs
. Q . Marche_tapis 0 p_presb (1) 0
. Q . Cmd_switch1 1 P_métalb(2) 1
Cmd_switch2 2 P_nonnoireb (3) 2
Cmde_stoppeur_retracte 3 Gliss_pleineb (4) 3
4 4
5 5
6 6
7 7
Les capteurs sont connectés sur le port P2. (Tous les capteurs sont actifs a 0)

Les actionneurs sont connectés sur le port P8. (Tous les actionneurs sont actifs a 1)

Nous allons mettre en ceuvre un programme qui range les piéces de couleur dans des glissicres
suivant une politique donnée.

Fonctionnement des capteurs

p_nonnoireb permet de détecter uniquement les pie¢ces rouges ou métalliques. Ce capteur ne voit
pas les picces noires.

p_metalb ne détecte que les pieces métalliques

p_presb détecte toutes les pieces (rouge, métallique et noire)

Dans cet exercice, on veut stocker les piéces de méme couleur dans la méme glissiére, par exemple
les pieces rouges sont stockés dans la premiere glissicre, les métalliques dans la deuxieme et les
moires dans la troisiéme glissiere.

Pour stocker la piece rouge dans la premiére glissiere, il suffit de mettre le tapis en marche, de
commander le switchl pour que la piece soit dirigée vers la premiere glissiere. On détecte que la
piece est bien entrée dans la glissiére en testant le capteur gliss pleineb a 0.

On procede de méme pour la piece métallique en commandant le switch2.

On procede de méme pour la piece noire mais on n'a pas de switch a commander

a) Donner |'organigramme structuré de la fonction, .
o . -y — | uc type piece

rangement _dans_glissiere qui range une pi¢ce dans une

glissiére si on considere qu'en entrée type piece est 0 rangement_dans_glissiére

pour la piece rouge, 1 pour la piece métallique et 2 pour

la pi¢ce noire.

Analyse
Traitement de chaque piéce :
Rouge (type piece =0):
tapis en marche, stoppeur_retracté, switchl activé => port_sortie = 0b00001011= 0x0B
Attendre que la piece tombe dans la glissiere =>masque isole =0x08
masque_attendu = 0x00

métallique (type piece = 0):
tapis en marche, stoppeur_retracté, switch2 activé => port_sortie = 0b00001101= 0x0D
Attendre que la piece tombe dans la glissiere =>masque isole =0x08
masque_attendu = 0x00
noire (type piece = 0):
tapis en marche, stoppeur_retracté => port_sortie = 0b00001001= 0x09
Attendre que la piece tombe dans la glissiere =>masque isole =0x08
masque_attendu = 0x00

désactiver stoppeur retracté et switchl => port_sortie = 0b00000001= 0x01

rangement_dans_glissicre
— | uc type piece

type piece
=2

Stoppeur retracté = 1
Marche=1

Switch1=1

= Port_sortie = 0x0B

Stoppeur retracté = 1
Marche=1

Switch2=1

= Port_sortie = 0x0D

Stoppeur retracté = 1
Marche=1
= Port_sortie = 0x09

gliss_pleineb

__

Stoppeur retracté = 0
Marche=1
= Port_sortie = 0x01

Organigramme de la fonction

Traduction en langage C

début traduction en langage C

void rangement dans_glissiere
(unsigned char type piece)
{

switch (type piece & 0x03)
{ case 0x00 : //rouge
P8 = 0x0B;
// attente passage pie¢ce dans
// 1a glissiére
whille ((P2 & 0x08)== 0x08);
break;
case 0x01 ://métallique
P8 = 0x0D;
// attente passage pi¢ce dans
// 1a glissiére
whille ((P2 & 0x08)== 0x08);
break;
case 0x02 ://noire
P8 = 0x0D;
// attente passage pi¢ce dans
// la glissiere
whille ((P2 & 0x08)== 0x08);
break;
j
P8 =0x01;
H

Suite traduction en langage C

b) Donner 1'organigramme de la fonction qui identifie la couleur de la pi¢ce placée sur le tapis

Analyse
Pour faire cette détection, analysons comment chaque couleur est détectée.

Rappel :
Fonctionnement des capteurs

p_nonnoireb permet de détecter uniquement les pieces rouges ou métalliques. Ce capteur ne voit
pas les pieces noires.

p_metalb ne détecte que les picces métalliques

p_presb détecte toutes les pieces (rouge, métallique et noire)

Sens marche

TTT

Position des capteurs

p_presb p_nnoireb
p_metalb
Tableau de détection des piéces
Capteur p_nnoireb Capteur p_metalb Capteur p_presb
Piéce rouge déctectée déctectée
Piece métallique déctectée déctectée
Piéce noire déctectée

Premiére conclusion

a) pour détecter la piece rouge, il faut p_nonnoireb (actif) puis p_presb (actif)

b) pour détecter la piece métallique, il faut p_nonnoireb (actif) puis p_metalb (actif)
c) pour détecter la piece rouge, il faut uniquement p_presb (actif)

Deuxiéme conclusion

Lorsqu'une piece arrive en début de tapis, elle est soit nonnoire soit noire
Donc il faut surveiller les deux capteurs (p_nnoireb et p_presb)

on attend jusqu'a ce qu'un de ces capteurs soit actif
= attendre tant qu'aucune des deux couleurs n'est détectée
sic'est p_presb qui est actif
alors c'est une piéce noire (piece =2)
sinon c'est une piece rouge ou métallique
on surveille maintenant p_metalb et p_presb
on attend jusqu'a ce que l'un de ces capteurs soit actif
= attendre tant qu'aucune des deux couleurs n'est détectée

sic'est p_presb alors la piéce est rouge (piece =0)
sinon la piece est métallique (piece = 1)
fsi

fsi

Organigramme

detecter_couleur

retour(uc)

uc xretour, lu

piece métallique

xretour = 1

ybiece noire

xretour = 2

piece rouge

xretour =0
retour(xretour) |

Traduction en langage C

11 faut faire des masques et utiliser les instructions booléennes pour tester les bits

Exemple attendre p_presb =1 et p_nnoiren=1 revient a :

1- lire le port P2

2- faire le masque avec le masque d'isolement de p_presb et p_nnoireb
3- recommencer en 1- si le résultat = masque d'isolement de p_resb et p_nnoireb
= aucun des deux capteurs n'est actif

L'organigramme détaillé devient :

detecter_couleur

retour(uc)

uc xretour, lu

lu = Lire le port P2

Attente

(lu & 0x5)= 0x05 p_presb?=1 et pnnoireb?=1

p_presb?=0

piece métallique

p
& 0x03)= 0x0
O

Attente
presb?=1 et pmetalp ?7=1

' presb=0 + biece noire
xretour = 2

piece rouge

| xretour = 1 |

| xretour = 0 |

'

retour(xretour) |

Traduction en langage C

unsigned char detecter couleur(void)

{ unsigned char lu, xretour;
do
lu=P2;
while ((Ilu & 0x05) == 0x05);
if ((Iu & 0x0x5) == 0x04)
xretour = 0x02;

else
{ do
lu=P2;
while ((lu & 0x03) == 0x03);
if ((Iu & 0x0x03) == 0x02)
xretour = 0x00;
else
xretour = 0x01;
}
return(xretour);

}

v

¢) Programme principal

Le programme principal est simple, c'est l'appel dans le bon ordre des deux fonctions précédentes.

Organigramme Codage en langage C

- oid main(void
Programmation sens des ports v ()

P2 en entrée {
P8 en sortie unsigned char t_piece;
) DP2 = 0x0000;
v .
t piece DP8 = 0x0FF;
retour(uc) "
detecter_coukeur dO{
v

t piece

“»| uc type piece t_piece = detecter_couleur();

rangement_dans_glissiere(t_piece);
“angement dans_glissiere }

| while(1);
}

d) On souhaite compléter le programme principal
précédent pour que le tri s'arréte si une des
glissieres est pleine. Pour cela, on va écrire une
fonction, attente gliss dispo, qui va attendre que le
capteur gliss_pleineb ne soit pas actif.

Attente_gliss_dispo

Lu = Lire le port P2

»
L
A

Lu & msk pleineb
=0

Codage en langage C
void attente gliss dispo(void)
{ unsigned char lu;
do
lu=P2;
while ((lu & 0x08) == 0x00);

L'organigramme du programme principal devient

Le programme principal est simple, c'est 1'appel dans le bon ordre des 3 fonctions précédentes.

Organigramme

Programmation sens des ports
P2 en entrée
P8 en sortie

>
i

A 4

Attente gliss dispo

i t piece
retour(uc) 5P

detecter piece

A

| uc type_piece
t piece
Mangement dans_glissiere

Codage en langage C
void main(void)

{

unsigned char t_piece;
DP2 = 0x0000;
DP8 = 0x0FF;

do
{
attente_gliss_dispo():
t _piece = detecter_couleur();
rangement_dans_glissiere(t_piece);

}
while(1);

}

Exemple 4 Gestion de tri de piéces sur un tapis roulant

Nous disposons d’un systéme constitué :
- d'un ensemble de capteurs
- d’un tapis roulant équipé des ¢éjecteurs pour le tri des pieces

Piece basse Eiect milieu Fin
P piece “.Piece haute Accum i))
i « 1 2 y ¥ _Fiect fin
: aP2 O L3
ﬂ ¢Ej¢” . “@
/ R > R hy

Le tapis roulant permet d'effectuer le tri entre des pieces hautes et des picces basses. Le tapis est ml
par un moteur qui dispose de 2 vitesses (grande ou petite).

Ces éléments se déclinent en entrées-sorties suivantes :

- des actionneurs (actifs a 1) : (sorties) —> des capteurs (actifs a 0) : (entrées)
- marche (commande de mise en marche du tapis
petite vitesse) - P_pieceb (détecte la présence d’une
- GV (permet de passer en mode grande vitesse piece en début de tapis),
avec marche active) - P_basseb (détecte tout type de picces),
- eject_fin (pour ¢jecter une piece en fin de - P_hauteb (détecte seulement les picces
tapis). hautes),
Pour ¢éjecter une piece, on doit maintenir la - Fin_bdeb (détecte la piece pour
commande jusqu'a ce le capteur indique I’éjection en fin de bande).
que la picce a été éjectée

1 port pour la commande du tapis

Entrées (capteurs) Sorties
Connexions sur la Connexions sur la
magquette magquette

Port d'entrée Port de sortie

P pieceb | P2.0

P basseb | P2.1

P hauteb | P2.2 Marche Pg.2

présenceb | P2.3 Grde vitesse | P8.3

Fin bdeb | P2.5 Eject fin P8.5

Cabhier des charges
Dans cet exercice, le tapis est alimenté manuellement en piéces a trier.

On souhaite réaliser des opérations de tri de picces en les ¢jectant en fin de tapis

On ne traite qu’une piéce la fois et toutes les pieces sont éjectées a la fin.
Le tapis est mis en marche dés qu'une pi¢ce est détectée au début du tapis.
Toutes les pieces sont €jectées en fin de tapis.

Par ailleurs,
- on arréte le tapis s’il n’y a pas de picce a traiter ou en cours de traitement
- on compte le nombre total de picces traitées
- on compte le nombre de pi¢ces basses
- on compte le nombre de pi¢ces hautes

Chaque compteur est visualisé sur la console des que le compteur est modifié
PT = toutes les pieces PH = picces hautes PB = picces basses

a) Donner la vue externe de la fonction qui
permet de commander le tapis et de trier.

b) Donner l'organigramme de la fonction,
gestion_tapis_hauteur, qui permet de
commander le tapis, de trier ces picces.

c¢) Traduire I'organigramme structuré basé
composants en langage C

Analyse

Les capteurs utiles sont :

p_pieceb qui détecte I'arrivée de toutes les pieces au début du tapis
p_hauteb qui détecte les pieces hautes

fin bdeb qui détecte 'arrivée des piéces en fin de tapis

Remarque :

Le capteur p_basseb n'est pas utile dans cet exercice car toutes les piéces sont éjectées en fin de tapis et par
ailleurs, il voit aussi bien les pieces hautes que basses.

P _presence n'est pas non plus utile..

Analysons la séquence pour chaque type de piéce :

a) Piéce haute
elle est détectée en début de tapis puis par le capteur p_hauteb et par le capteur finbdeb puis ¢jectée

b) Piéce basse
elle est détectée en début de tapis puis par le capteur finbdeb puis éjectée.

Conclusion
La piéce basse ne sera reconnue que lorsqu'elle atteint le capteur finbdeb.
La piéce haute est détectée par le capteur p_hauteb.

EJF
p_pieceb p_hauteb

' '

— Fin_bdeb
4_

marche GV

On doit donc
< surveiller p_pieceb pour détecter 1'arrivée des picces

& surveiller en méme temps p_hauteb et fin_bdeb pour détecter les pieces hautes et les piéces basses

Organigramme

vy

A
lu=P2

aucune piéce
lu & 0x01=0x0 Attente arrivée d'une piéce

marche=1 GV=0
T

| (cpt_toute)++ | Comptage de la piéce
LI ______________________________
lu=P2

aucune piecg
sur I'un des capte

Fin_bdeb
donc
Picce basse

Détection hauteur d'une piéce

Attente arrivée piece

— s
| (cpt_basse) | Comptage piece basse haute en fin de tapis

Ejection de ka piéces

Traduction en langage C

