
 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 1

Polycopiés

Cours Informatique embarquée

GEII Toulouse 2020 - 2021

A. Nketsa

CHAP 5 Langage C (suite)

Langage C (suite 1)

- Retour sur les pointeurs

 Langage C (suite 2)
- Fonctions
- Notion de composant logiciel
- Organigramme structuré basé composants
 - Exemples de passage de paramètres
- Exemple de traduction d'organigrammes en langage C

Langage C (suite 3)

- Fonctions d'entrées-sorties standard en langage C
- Représentation sous forme de composants logiciels
- Exemples d'utilisation des fonctions d'entrée-sortie standard
  sorties standard
  entrées standard

Langage C (suite 4)
(Utilisation des masques en informatique embarquée)

- Principe général
- Gestion des capteurs
- Actualisalisation des sorties

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 2

CHAP 5 Langage C (Suite)

Langage C (suite 1)

- Retour sur les pointeurs

Type pointeur
a) Définition
Un pointeur est une variable qui contient l'adresse d'une autre variable.

Autrement dit : un pointeur contient une valeur qui ne peut être interprétée que comme une adresse.

Plus simplement, on dit qu'un pointeur contient l'adresse d'une autre variable que l'on appelle variable pointée.

b) Déclaration d'un pointeur
 Sans valeur initiale :

type* nom_pointeur; // notée plus couramment type *nom_pointeur;

 Avec valeur initiale :
type* nom_pointeur=adresse;

c) Compréhension
1) le pointeur pointe sur une variable de même type que celui de la déclaration de la variable.
2) nom_pointeur est la variable pointeur qui contient l'adresse de la variable pointée
3) *nom_pointeur est le contenu de la variable pointée
4) nous conseillons de noter le pointeur sous la forme p_nom pour le différencier des variables standard

5) Exemple :
unsigned char octet = 0x50;
unsigned char *p_octet;

Schéma
adresse Nom_variable contenu interprétation
0x100 octet 0x50 Valeurs des

variables 0x101 78
0x102 0x54
0x103 p_octet 0x100 Adresse de la

variable pointée 0x104

5-1) Schéma

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 3

p_octet

octet

Adresse p_octet = 0x103

Contenu p_octet
= 0x100

Adresse de octet
Adresse octet = 0x100

Contenu octet
= 0x50char*

char

p_octet = &octet;  (p_octet) = 0x100
lecture : le contenu de p_octet = adresse de octet donc (p_octet) = 0x100

octet = (*p_octet)  (*p_octet)  ((0x100)) = (octet) = 0x50
lecture : (*p_octet) est le contenu de la variable de type char donc l'adresse est dans p_octet

c'est-à-dire : le contenu de la variable ayant l'adresse 0x100
donc *p_octet = ((p_octet))

(adresse)

contenu

5-2) le contenu de p_octet est 0x100 = adresse variable pointée

5-3) le contenu de *p_octet est le contenu de la variable qui se trouve à l'adresse 0x100 donc le contenu de la variable octet

5-4) Conclusion (*p_octet) = 0x50

5-5) Aide pour manipuler les pointeurs
 Pour manipuler les pointeurs, nous conseillons la notation parenthésée qui consiste à représenter le contenu par des parenthèses.

- (nom_variable) représente le contenu de nom_variable
- ((nom_pointeur)) représente le contenu du contenu de nom_pointeur

Pour simplifier la lecture et l'interprétation, la dernière paire de parenthèses () représente le contenu de la variable pointée. Donc toutes les doubles
parenthèses réprésentent l'adresse

 Donc
((ptr))  *ptr ((ptr))  (adresse)

contenu
variable pointée

adresse

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 4

(((ptr)))  *(*ptr) (((ptr)))

adresse1

(adresse2)

contenu de la variable pointée

d) Exemples d'application
unsigned char octet1 = 0x20;
unsigned char* p_uchar = &octet1;

Tableau de réservation des variables
adresse Nom_variable contenu Remarque
0x50 octet1 0x20 Octet1 contient la valeur initiale 0x20
0x51
0x52 p_uchar 0x50 p_uchar contient l'adresse de la variable pointée
0x53

Déterminer les contenus des variables notées
variable Contenu parenthésé Contenu intermédiaire Contenu manipulée
octet1 (octet1) = 0x20 octet1 = 0x20
p_char (p_char) = 0x50 p_octet = 0x50
*p_char *p_char = ((pchar)) (p_char) = 0x50

((p_char)) = (0x50) = 0x20
*pchar = 0x20

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 5

e) Règles de manipulation des pointeurs
- on peut ajouter une valeur entière à un pointeur  nom_pointeur + valeur_entière
- on peut soustraire une valeu entière d'un pointeur  nom_pointeur - valeur_entière

Valeur_entière peut être :
 - une constante entière
 - une variable de type char, unsigned char, int ou unsigned int

 En savoir plus
Pour calculer l'adresse pointée par ces deux opérations, il faut tenir compte de la taille du type pointé.

 adresse pointée = (@nom_pointeur)  (taille_type_pointeur * valeur_entière)

Conseil d'utilisation des pointeurs
Nous conseillons d'utiliser les parenthèses (*nom_pointeur) pour éviter des ambiguïtés d'interprétation dues à la priorité entre opérateurs.

Relations Pointeur – Tableau
Rappel : nous avons déjà dit que le nom du tableau est l'adresse du tableau

On peut donc considérer que le nom d'un tableau est un pointeur qui contient l'adresse fixe du tableau.

Considérons la déclaration

unsigned int tab_ui[5];
unsigned int *p_uint;

on peut écrire :
p_uint = tab_ui; // p_uint reçoit l'adresse de tab_ui
p_uint = &tab_ui[indice]; // p_uint reçoit l'adresse de tab_ui[indice]

Considérons :
p_uint = tab_ui; // p_uint reçoit l'adresse de tab_ui

Les écritures suivantes sont indentiques

tab_ui[indice]  *(p_uint + indice) // la parenthèse est obligatoire pour éviter l'ambigüité

tab_ui[2]  p_uint[2] // sans *

p_uint[2]  *(p_uint + 2)

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 6

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 7

Les Fonctions en langage C

Une fonction est une entité qui peut être autonome.
C'est un élément important de la structuration d'un programme.
On peut considérer qu'une fonction est un composant comme en électronique numérique

Paramètres et Notion d'entrée, de sortie et d'entrée-sortie
Les paramètres d’une fonction peuvent être classés en 3 groupes que nous ramènerons à groupes

- Groupe 1 : le paramètre n’est pas modifié pour le programme qui appelle la fonction. On dit que c’est une entrée.
- Groupe 2 : le paramètre est modifié pour le programme qui appelle la fonction. On dit que c’est une sortie.
- Groupe 3 : le paramètre est utilisé dans la fonction comme une entrée et peut être modifié pour le programme qui appelle la fonction. On dit que c’est

une entrée-sortie.

Remarque :
- la sortie et l’entrée-sortie peuvent être regroupées.
- Ce paramètre doit utiliser le pointeur pour indiquer l’adresse de la variable que le programme appelant veut faire modifier.

c- Notion de paramètres formels
Un paramètre formel est une variable qui apparaît dans l’entête de la fonction.

Cette variable peut être utilisée dans la fonction comme toute autre variable.
Si le paramètre est de type entrée alors la variable associée est une variable locale

Déclaration d’un paramètre formel d’entrée
Type nom_paramètre_entree

Déclaration d’un paramètre formel d’entrée-sortie ou de sortie
Type* nom_paramètre_entree_sortie souvent notée Type *nom_paramètre_entree_sortie

d- Variable locale
Une variable locale est une variable déclarée dans la fonction.
Elle n’est vue que dans la fonction même si elle a le même nom qu’une variable globale.

Nous conseillons cependant pour des raisons de lisibilité de ne pas donner le même nom à des variables locales et globales.

e- Variables globale
Nous interdisons de ne pas utiliser les variables globales dans les fonctions saf cas très particulier

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 8

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 9

f- Structure d'une fonction

Définition d'une fonction (création d'une fonction)

La définition d'une fonction correspond à la création de la fonction.

Fonction sans un retour

void nom_fonction (déclaration des paramètres formels)

{ // déclaration des variables locales

// corps de la fonction
}

Prototype d'une fonction :

void nom_fonction (déclaration des paramètres formels);

Fonction avec un retour

type_retour nom_fonction (déclaration des paramètres formels)

{ // déclaration des variables locales

// corps de la fonction
 return(valeur);

}
Dans ce cas, on doit trouver return dans la fonction.
Nous conseillons de n'avoir qu'un seul return

Prototype d'une fonction :

type_retour nom_fonction (déclaration des paramètres formels)

g) Utilisation (appel) d'une fonction

g-1) L’utilisation de la fonction consiste à :

- à appeler la fonction en remplaçant les paramètres formels par les paramètres effectifs.

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 10

- à utiliser éventuellement le résultat de la fonction

Le paramètre effectif est la variable ou la constante qui remplace le paramètre formel.

g-2) Passage de paramètres
Le remplacement du paramètre formel par le paramètre effectif est appelé passage de paramètres

Ce passage doit respecter certaines règles :
- l'ordre des paramètres formels
- le type des paramètres formels et effectifs : ces types doivent être compatibles

g-3) Syntaxe d'utilisation
Deux cas :

Pas de retour, l'appel sera
 nom_fonction_sans_retour(passage de paramètres);

Avec un retour, l'appel sera

 resultat = nom_fonction_avec_retour(passage de paramètres);

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 11

Composant logiciel en langage C
Un composant en langage C est une fonction avec valeur de retour ou pas.
Il comporte deux parties :

- la vue externe appelée aussi interface, ce sont les entrées-sorties du composant. En d'autres termes, ce sont les paramètres formels de la fonction et la valeur de
retour éventuelle.

- la vue interne, c'est le comportement de la fonction. En d'autres termes, c'est la suite d'instructions qui décrit ce que fait la fonction.

Représentation
Nous allons représenter les fonctions comme des composants avec une vue externe que nous allons utiliser dans les organigrammes

a) Représentation graphique
Dans cette représentation,
 chaque paramètre formel possède un nom formel associé à un type.

c pour char, uc pour unsigned char i pour int, ui pour unsigned int
f pour float d pour double l pour long et ul pour unsigned long

 chaque paramètre formel possède une flèche pour indiquer le sens du paramètre

Paramètre formel
entrée sortie Entrée-sortie retour

Remarque:
Le paramètre entrée-sortie de type pointeur s'écrit comme un paramètre de sortie seule de type pointeur ou type tableau.

Schéma général de la représentation

Te nom_formel_entrée

Tes* p_nom_formel_es

Nom_fonction

retour(Type)

Prototype :
Type nom_fonction (Te nom_formel_entree,

Tes* p_nom_formel_es)

Te = type du paramètre d'entrée

Remarques importantes

a) Nous avons mis à gauche les paramètres
formels en entrée, en sortie et entrée-sortie
puis à droite le retour de la fonction

a) Il est conseillé d'éviter l'utilisation des
variables globales.

b) Pour des raisons de lisibilité, nous proposons
de faire précéder par p_ le nom des
paramètres formels en sortie ou en entrée-

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 12

Tes = type du paramètre de sortie ou d'entrée-sortie
sortie. Ceci permet de voir directement que le
paramètre formel est un pointeur.

Littérale : fonction prototype

type Nom_fonction (type nom_formel_entree,
 type *p_nom_formel_es)

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 13

Passage de paramètres
Le passage de paramètres consiste à connecter des paramètres effectifs aux paramètres formels et en respectant l’ordre de remplacement.

Un paramètre formel en entrée peut être connecté à un paramètre effectif qui peut être :
- une constante notée en langage C valeur
- un contenu d'une variable noté en langage C nom_variable

Un paramètre formel pointeur peut être connecté à un paramètre effectif qui peut être :
- l’adresse d'une variable notée en langage C &nom_variable ou nom_tableau

 ou &nom_structure
- le contenu d'un pointeur (pointant le même type) noté nom_pointeur

Schéma de principe du passage de paramètres
Le schéma consiste à indiquer :

- à l'intérieur du cadre de la fonction :
* le nom de la fonction
* les paramètres formels avec leur type associé
* éventuellement les entrées physiques, les sorties physiques et les variables globales (même si elles sont déconseillées)

- à l'extérieur du cadre de la fonction
* les paramètres effectifs
* les connexions des entrées physiques, des sorties physiques et des variables globales.

Exemple de représentation avec passage de paramètres

Exemple général

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 14

Te nom_formel_entrée

Tes* p_nom_formel_es

Nom_fonction

retour(Type)

Prototype :
Il permet de définir l'ordre de passage des paramètres

valeur
nom_variable

&nom_variable
nom_pointeur
nom_tableau

Tes nom_tab[]&nomtableau[0]
nom_pointeur
nom_tableau

Tes nom_tab_2d[][n]
&nom_tableau[0][0]
nom_pointeur
nom_tableau

resultat

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 15

Utilisation d'une fonction
Utiliser une fonction consiste à :

- à placer le composant dans la séquence de traitement

- connecter le composant, c'est-à-dire appeler la fonction avec un passage de paramètres.
La connexion des paramètres effectifs sur les paramètres formels se fait en respectant l'ordre des paramètres formels dans la fonction prototype et en remplaçant
chaque paramètre formel par le paramètre effectif correspondant.

- exploiter éventuellement le résultat fourni par la fonction.

Exemples

Te nom_formel entrée

Tes *p_nom_formel_es

Nom_fonction retour(Tr)
resultat

Nom_effectif_entree

&Nom_effectif_es

 type_retour Nom_fonction (type nom_formel_entrée, type *ptr_nom_formel_es)

resultat = Nom_fonction (nom_effectif_entrée, &nom_effectif_es)

Codage
Le codage consiste à traduire la description graphique en programme en langage C.
La démarche que nous proposons permet d’automatiser la traduction de la connexion graphique ou littérale formelle en instructions du langage C à partir de la description
:

- graphique
- littérale formelle

Graphique

Te : nom_formel entrée

Tes : (*ptr_nom_formel_es)

Nom_fonction Tr : valeur_retour
resultat

Nom_effectif_entree

&Nom_effectif_es

Littérale formelle

Fonction prototype :
type_retour Nom_fonction (type nom_formel_entrée, type *ptr_nom_formel_es)

Connexion littérale formelle
Resultat = Nom_fonction (nom_effectif_entree, &nom_effectif_es)

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 16

Exemples de passage de paramètres par valeur
schéma Codage en langage C

Le paramètre effectif est une constante

fct_param_valeur

type param_valconstante result
ret(type)

prototype type fct_param_valeur(type param_val);

result = fct_param_valeur(constante);

Le paramètre effectif est une variable

fct_param_valeur

type param_valnom_variable result
ret(type)

prototype type fct_param_valeur(type param_val);

result = fct_param_valeur(nom_variable);

Le paramètre effectif est une case d'un tableau

fct_param_valeur

type param_valnom_tab[ind] result
ret(type)

prototype type fct_param_valeur(type param_val);

result = fct_param_valeur(nom_tab[ind]);

Le paramètre effectif est une variable pointée

fct_param_valeur

type param_val*pointeur result
ret(type)

prototype type fct_param_valeur(type param_val);

result = fct_param_valeur(*pointeur);

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 17

Exemples de passage de paramètres par adresse Il faut toujours passer une adresse
Format paramètre formel Paramètre effectif Schéma et codage en C
Type *p_nom_formel Une variable

Nom_variable

Schéma

fct_param_adresse

type *p_nom_formel&nom_variable result
ret(type)

Prototype : type fct_param_adresse(type *p_nom_formel);

Codage en C :

result = fct_param_adresse(&nom_variable);
 Une case d'un

tableau

nom_tab[ind]

Schéma

fct_param_adresse

type *p_nom_formel&nom_tab[ind] result
ret(type)

Prototype : type fct_param_adresse(type *p_nom_formel);

Codage en C :
result = fct_param_adresse(&nom_tab[ind]);

 Variable pointée

*nom_pointeur

Schéma

fct_param_adresse

type *p_nom_formelnom_pointeur result
ret(type)

Prototype : type fct_param_adresse(type *p_nom_formel);

Codage en C :
result = fct_param_adresse(nom_pointeur);

 Un tableau

Nom_tableau

Schéma

fct_param_adresse

type *p_nom_formelnom_tableau result
ret(type)

Prototype : type fct_param_adresse(type *p_nom_formel);

Codage en C :
result = fct_param_adresse(nom_tableau);

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 18

Type nom_tableau[] Un tableau

Nom_tab

Schéma

fct_param_adresse

nom_tab result
ret(type)

type nom_tableau[]

Prototype : type fct_param_adresse(type nom_tableau[]);

Codage en C :
result = fct_param_adresse(nom_tab);

 Variable pointée

*nom_pointeur

Schéma

fct_param_adresse

nom_pointeur result
ret(type)

type nom_tableau[]

Prototype : type fct_param_adresse(type nom_tableau[]);

Codage en C :
result = fct_param_adresse(nom_pointeur);

 Une case d'un
tableau

nom_tab[ind]

Schéma

fct_param_adresse

&nom_tab[ind] result
ret(type)

type nom_tableau[]

Prototype : type fct_param_adresse(type nom_tableau[]);

Codage en C :
result = fct_param_adresse(&nom_tab[ind]);

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 19

Présentation d'une fonction en organigramme
Nom_fonction

Retour(Type)

variables locales

Te v1

Tes * p_ v2

Organigramme de la fonction

Vue extene de la fonction

Nom_fonction

Retour(Type)Te v1

Tes * p_ v2

Exemple

lecture_des_entrées
uc :*p_xmem_entree

calcul_action_transitionuc : xetat_mae

uc : xmem_entree

uc : *p_xmem_sortie

calcul_action_etat

uc : *p_xeta_mae

uc : xmem_entree
Evolution_mae

Variables locales
uc mem_entree;

&mem_entree

p_ymem_sortie

mem_entree

mem_entree

uc:*p_yetat_mae

uc: *p_ymem_sortie

*p_yetat_mae

p_yetat_mae

Gestion_codeur

Actualisation_des_sorties

uc: xmem_sortie*p_ymem_sortie

void gestion_codeur(
 unsigned char *p_yetat_mae,
 unsigned char *p_ymem_sortie)
{

unsigned char mem_entree;

lecture_des_entrees(&mem_entree);

calcul_action_transition(

 *p_yetat_mae, mem_entree,
 p_ymem_sortie);

Evolution_mae(mem_entree,

 p_yetat_mae);

calcul_action_etat();

Actualisation_des_sorties(*p_tmem_sortie
);

}

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 20

Les entrées sorties standard

Remarques importantes

a) Les instructions d'entrées sorties standard
 En C++

C’est le compilateur
qui fait presque tout
pour vous pour
afficher

En C standard
C’est vous qui devez dire au compilateur
ce que vous souhaitez afficher

Sortie standard Cout Ecriture d'un caractère
putchar(char code_ascii)

Ecriture d'une chaîne de caractères
puts(char *p_ch)

Ecriture formatée
printf("msg + balises", parameters)

Entrée standard Cin

Lecture d'un caractère
getkey(void)
getchar(void)

Lecture d'une chaîne de caractères
gets(char *p_ch, ui nb_car)

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 21

 Fonctions d'entrées-sorties standard en langage C

Fonctions de sortie standard
La sortie standard du langage C est un écran que nous appellerons terminal
On peut répartir les fonctions de sortie standard en 3 groupes de base :

Affichage :

- d'un caractère
- d'une chaîne de caractères
- formaté : on peut choisir la façon d'afficher tout type d'information.

Terminal

caractère

Chaîne de caractères
putchar

puts

Affichage formatée
printf

Notation de type pour les composants
c = char uc = unsigned char
i = int ui = unsigned int
f = float

Fonctions Exemples
Affichage d'un caractère

putchar

c code_ascii

Prototype :
char putchar(char code_ascii)

retour(c)

a) Afficher le caractère A sur l'écran
putchar('A');

b) Afficher le caractère donc le code ascii est dans la
variable, car, de type char

putchar(car);

Affichage d'une chaîne de caractères

puts

c* ptr_chaine

Prototype :
int puts(char* ptr_chaine)

retour(int)

a) Afficher la chaîne de caractères "TEST" sur l'écran
puts("TEST");

b) Afficher la chaîne de caractères stockée dans la variable,
tab_car, de type tableau de char
Déclaration
 char tab_car[20];

puts(tab_car);

Remarque importante:
On doit s'assurer que la chaîne, tab_car, se termine par 0x00.
Sinon la fonction affichera des caractères erronés.

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 22

Affichage formaté

printf

c* texte_et_balises

Prototype :
int printf ("texte_et_balises", paramètres)

retour(int)
paramètres

Remarques :
1- Texte est une chaîne constante de caractères.

2- "paramètres" est la liste des variables à visualiser séparées par des virgules.

3- Une balise est une indication de la façon d'interpréter l'information binaire à afficher. Il est noté % suivi
d'un caractère d'interprétation

%c = interprété comme un caractère
%s = interprété comme une chaîne de caractères
%u = interprété comme un entier non signé
%d = interprété comme un entier signé
%x = interprété comme un entier non signé et visualisé en hexadécimal
%f = interprété comme un nombre en flottant visualisé sous la forme xxx.yyy

 Pour les balises %u, %d, %x on peut préciser le nombre de digits à afficher.

a) les digits manquants sont remplacés par des espaces, si le nombre compte moins de digits à afficher,
syntaxe : %nu %nd %nX ou %nx

b) les digits manquants sont remplacés par des 0, si le nombre compte moins de digits à afficher.
syntaxe : %0nu %0nd %0nX ou %0nx

c) %f

syntaxe : %n.mf n digits pour la partie entière
 m digits pour la partie fractionnaire

4- La balise doit être compatible avec le type d'information à afficher. On peut cependant utiliser la
conversion explicite (Cast) pour forcer la compatibilité.
Par exemple afficher un unsigned char avec la balise %u peut produire un résultat curieux en fonction du
compilateur. Certains compilateurs assurent des conversions implicites correctes et d'autres pas. En effet,
%u est associé aux entiers donc pour forcer la compatibilité, il suffit de faire un cast de la variable en
écrivant (unsigned int) nom_variable.

5- Certains compilateurs ne supportent pas trop de paramètres dans une seule fonction printf. Il est conseillé
de le faire en plusieurs printf.

6- Quelques caractères spéciaux utiles :
\n positionner le curseur à la ligne suivante en consevant la colonne
\r positionner le curseur au début de la ligne en cours, donc colonne 0
\0x00 fin de la chaîne de caractères
\g bip sonore

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 23

Exemples printf

Affichage d'une variable de type char en char

printf

c msg+balises

paramètres

"%c"

nom_var_char

printf("%c", nom_var_char);

Affichage d'une variable de type char en hexadécimal

nom_var_char
printf

c msg+balises

paramètres

"%x"

printf("%x", nom_var_char);

Affichage d'une variable de type char en hexadécimal
avec un nombre fixé de digits

printf

c msg+balises

paramètres

"%nx"

nom_var_char

printf("%nx", nom_var_char);

Affichage d'une variable de type char en entier non signé

printf

c msg+balises

paramètres

"%u"

(unsigned inr) nom_var_char

printf("%u", (unsigned int) nom_var_char);

Affichage d'une variable de type chaine de caractères

printf

c msg+balises

paramètres

"%s"

nom_chaine

printf("%s", nom_chaine);

Affichage d'une variable de type int en entier signé

printf

c msg+balises

paramètresnom_var_int

"%d"

printf("%d", nom_var_int);

Affichage d'une variable de type int en entier non signé

printf

c msg+balises

paramètresnom_var_int

"%u"

printf("%u", nom_var_int);

Affichage d'une variable de type float en float

printf

c msg+balises

paramètresnom_var_float

"%f"

printf("%f", nom_var_float);

Affichage d'une variable de type float en float avec un
nombre fixé de digits

printf

c msg+balises

paramètres

"%x.yf"

nom_var_float

printf("%x.yf", nom_var_float);

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 24

Fonctions d'entrée standard
L'entrée standard du langage C est un clavier.
On peut répartir les fonctions d'entrée standard en 3 groupes .

Lecture :

- d'un caractère
- d'une chaîne de caractères
- formatée :

Clavier

caractère

Chaîne de caractères
getchar - _getkey

gets

lecture formatée
scanf M

ic
ro

co
n

tr
ôl

eu
r

Fonctions Exemples
Lecture d'un caractère tapé au clavier sans écho
(sans affichage sur l'écran du symbole du caractère
tapé).
La fonction est bloquante. C'est-à-dire qu'elle
attend jusqu'à ce qu'un caractère soit tapé.

_getkey

Prototype :
char _getkey(void)

retour(c)

var_char = _getkey();

Lecture d'un caractère tapé au clavier avec écho
(avec affichage sur l'écran du symbole du caractère
tapé)
La fonction est bloquante. C'est-à-dire qu'elle
attend jusqu'à ce qu'un caractère soit tapé.

getchar

Prototype :
char getchar(void)

retour(c)

var_char = getchar();

Indication de caractère disponible provenant du
clavier
La fonction est non bloquante. C'est-à-dire qu'elle
n'attend pas qu'un caractère soit tapé.

kbhit

Prototype :
bit kbhit(void)

retour(bit)

 if (kbhit())
 { //lire la touche détectée
 _getkey(); ou getchar();
 }

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 25

Lecture d'une chaîne de caractères tapés au
clavier

gets

c* ptr_chaine

Prototype :
char* gets(char* ptr_chaine,

unsigned int xnb_car)

retour(* char)
ui xnb_car

On doit indiquer :
- la chaîne de caractères où les codes ascii des

caractères tapés doivent être stockés
- le nombre de caractères acceptés

La fin de saisie de la chaîne intervient si on tape :
 Enter , Espace

Si on tape :
- moins de caractères que prévus, la fonction

retourne une chaîne de caractères avec insertion
automatique de \0x00 (fin de la chaîne)

- plus de caractères que prévus, la fonction
tronque à xnb_car -1 et chaîne de caractères
avec insertion automatique de \0x00 (fin de la
chaîne)

Il est donc de votre responsabilité de prévoir
suffisamment de places par rapport au nombre
xnb_car.

gets(nom_chaine, nb_car);

Lecture des informations formatées

scanf

c* balises

Prototype :
int scanf ("balises", paramètres)

retour(int)* paramètres

Cette fonction fonctionne assez mal pour le
formatage des informations. La moindre erreur de
saisie crée des décalages de gestion du buffer
d'entrée. Par ailleurs, comme la longueur de la
chaîne n'est pas précisée, on risque des
débordements mémoires.

Pour lire les informations formatées, nous
conseillons d'utiliser la fonction gets et les fonctions
de conversions comme :

atoi convertir une chaîne de caractères en un
entier signé ou non

atof convertir une chaîne de caractères en un float

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 26

Lecture d'un entier tapé au clavier

gets

c* ptr_chaine

Prototype :
char* gets(char* ptr_chaine,

unsigned int xnb_car)

retour(* char)
ui xnb_car

gets(nom_chaine, 5);
entier = atoi(nom_chaine);

Remarque :
S'il y a une erreur, par exemple la saisie d'une lettre,
dans la chaîne, atoi retourne 0 sans indiquer
d'erreur.

Lecture d'un entier tapé au clavier avec
vérification des chiffres

Lecture d'un float tapé au clavier

gets

c* ptr_chaine

Prototype :
char* gets(char* ptr_chaine,

unsigned int xnb_car)

retour(* char)
ui xnb_car

gets(nom_chaine, 8);
entier = atof(nom_chaine);

Remarque :
S'il y a une erreur, par exemple la saisie d'une lettre,
dans la chaîne, atoi retourne 0 sans indiquer
d'erreur.

Lecture d'un float tapé au clavier

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 27

Langage C (suite 4)
(Utilisation des masques en informatique embarquée)

- Principe général
- Gestion des capteurs
- Actualisalisation des sorties

En informatique embarquée, les capteurs et les acyionneurs binaires sont souvent regoupés pour formés
des mots (octet ou mot de 16bits)
Lors de l'utilisation, on a souvent besoin de ne tester ou manipuler qu'un ensemble de ces bits.
Pour cela : il faut les isoler pour les manipuler
Nous avons vu lors des instructions logiques que l'on peut isoler un ou plusieurs bits dans un mot, de
même en utilisation les instructions booléennes on peut tester ces bits

Rappel
Pour isoler les bits ,

- on construit un masque en ET
- et on effectue l'opération logique ET (&)

Pour tester les bits isolés,

- on construit un masque avec la valeur attendue des bits à tester
 - on effectue une comparaison entre le résultat des bits isolés et le masque des valeurs attendues

Pour mettre des bits à 0
 - on construit un masque en ET des bits à mettre à 0
 - on effectue un ET logique (&) entre le mot et le complément à 1 (~) du masque en ET

Pour mettre des bits à 1
 - on construit un masque en ET des bits à mettre à 1
 - on effectue un OU logique (|) entre le mot et le masque en ET

Pour compémenter des bits à 1
 - on construit un masque en ET des bits à complémenter
 - on effectue un OU logique (|) entre le mot et le masque en ET

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 28

Gestion des capteurs
Considérons que nous avons un octet qui regroupe : les capteurs, les interruopteurs et les poussoirs d'un
système occupant dans l'octet les positions suivantes :

Variable : octet_entree
poussoirs interrupteurs capteurs
B7 B0
Pouss1 Pouss0 Inter1 Inter0 C3 C2 C1 C0

On admet que les capteurs sont actifs à 0

Gestion des actionneurs
Considérons que nous avons un octet qui regroupe : les actionneurs d'un système occupant dans l'octet les
positions suivantes :

Variable : octet_sortie
poussoirs interrupteurs capteurs
B7 B0
buzzer sirène moteur1 moteur0 Led3 Led2 Led1 Led0

On admet que les actionneurs sont actifs à 1

Exercice

si c2=0 et inter0=1 et pouss0 = 0
alors allumer la Led2
sinon eteindre la led2 et complémenter la led3

Donc il faut isoler les bits C2, inter0 et poussà dans octet_entree
 b7 b0
 Pouss1 Pouss0 Inter1 Inter0 C3 C2 C1 C0
Masque en ET (isolement)
Msk_isole

0 1 0 1 0 1 0 0

Masque valeur attendue
Msk_attendu

0 0 0 1 0 0 0 0

- masque en ET : 01010100b  0x54
- masque de test : 00010000b  0x10

Pour allumer la led2 sans modifier les autres, il faut construire le masque correspondant
 b7 b0
 buzzer sirène moteur1 moteur0 Led3 Led2 Led1 Led0
Masque en ET pour mise à 1
led2 (msk_led2)

0 0 0 0 0 1 0 0

Masque pour complémenter
led3 (msk_led3)

0 0 0 0 1 0 0 0

 CHAP5_Langage_C_2020_2021_v2_suite A.Nketsa DGEII Toulouse 3 29

D'où le programme

Temp = octet_entree & msk_isole

Temp = msk_attendu

octet_sortie = octet_sortie OU msk_led2octet_sortie = octet_sortie ET (msk_led2)

octet_sortie = octet_sortie OUExcl msk_led3

Traduction en langage C
Temp = octet_entree & msk_isole;
if (Temp == msk_attendu)
 {
 octet_sortie = octet_sortie | msk_led2;
 }

Else
 {
 octet_sortie = octet_sortie & (~msk_led2);
 octet_sortie = octet_sortie ^ msk_led3;
 }

