Polycopiés
Cours Informatique embarquée

GEII Toulouse 2020 - 2021
A. Nketsa
CHAP S Langage C (suite)

Langage C (suite 1)

- Retour sur les pointeurs

Langage C (suite 2)
- Fonctions
- Notion de composant logiciel
- Organigramme structuré basé composants
- Exemples de passage de parameétres
- Exemple de traduction d'organigrammes en langage C

Langage C (suite 3)
- Fonctions d'entrées-sorties standard en langage C
- Représentation sous forme de composants logiciels
- Exemples d'utilisation des fonctions d'entrée-sortie standard
& sorties standard
& entrées standard

Langage C (suite 4)

(Utilisation des masques en informatique embarquée)
- Principe général
- Gestion des capteurs
- Actualisalisation des sorties

CHAPS Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 1

CHAP 5 Langage C (Suite)

Langage C (suite 1)

- Retour sur les pointeurs

Type pointeur
a) Définition
Un pointeur est une variable qui contient I'adresse d'une autre variable.

Autrement dit : un pointeur contient une valeur qui ne peut étre interprétée que comme une adresse.
Plus simplement, on dit qu'un pointeur contient I'adresse d'une autre variable que 1'on appelle variable pointée.

b) Déclaration d'un pointeur
Sans valeur initiale :
type* nom_pointeur; // notée plus couramment type *nom pointeur;

Avec valeur initiale :
type* nom_pointeur=adresse;

¢) Compréhension
1) le pointeur pointe sur une variable de méme type que celui de la déclaration de la variable.

2) nom_pointeur est la variable pointeur qui contient I'adresse de la variable pointée
3) *nom_pointeur est le contenu de la variable pointée
4) nous conseillons de noter le pointeur sous la forme p_nom pour le différencier des variables standard
5) Exemple : Schéma
unsigned char octet = 0x50; adresse | Nom variable | contenu | interprétation
unsigned char *p_octet; 0x100 | octet 0x50 Valeurs des
0x101 78 variables
0x102 0x54
0x103 | p_octet 0x100 Adresse de la
0x104 variable pointée

5-1) Schéma

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 2

Adresse p_octet = 0x103
Contenu p_octet @

p_octet
= 0x100 Adresse octefy= 0x100

Adresse de octet

octet | Contenu octet
char* = 0x50

char

p_octet = &octet; = (p_octet) = 0x100
lecture : le contenu de p_octet = adresse de octet donc (p_octet) = 0x100

octet = (*p_octet) = (*p_octet) = ((0x100)) = (octet) = 0x50
lecture : (*p_octet) est le contenu de la variable de type char donc 'adresse est dans p_octet
c'est-a-dire : le contenu de la variable ayant 1'adresse 0x100
donc *p_octet=((p_octet) ,)
\ﬁ(_/

(adresse)

H_J

contenu

5-2) le contenu de p_octet est 0x100 = adresse variable pointée
5-3) le contenu de *p_octet est le contenu de la variable qui se trouve a I'adresse 0x100 donc le contenu de la variable octet

5-4) Conclusion (*p_octet) = 0x50

5-5) Aide pour manipuler les pointeurs
Pour manipuler les pointeurs, nous conseillons la notation parenthésée qui consiste a représenter le contenu par des parentheses.
- (nom_variable) représente le contenu de nom_variable
- ((nom_pointeur)) représente le contenu du contenu de nom_pointeur
Pour simplifier la lecture et l'interprétation, la dernic¢re paire de parenthéses () représente le contenu de la variable pointée. Donc toutes les doubles
parenthéses réprésentent 1'adresse

Donc
((ptr)) = *ptr ((ptr)) = (adresse)
H_J
adresse contenu
variable pointée

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 3

(((ptr))) = *(*ptr)

((()))
‘ L adressel |J ‘
(‘ adresseZ ‘)
N

contenu de la variable pointée

d) Exemples d'application
unsigned char octetl = 0x20;
unsigned char®* p uchar = &octetl;

Tableau de réservation des variables

adresse | Nom variable | contenu | Remarque

0x50 octetl 0x20 Octetl contient la valeur initiale 0x20

0x51

0x52 p uchar 0x50 p_uchar contient l'adresse de la variable pointée
0x53

Déterminer les contenus des variables notées

variable Contenu parenthésé

Contenu intermédiaire

Contenu manipulée

octetl (octetl) = 0x20

octetl = 0x20

p char (p_char) = 0x50

p_octet = 0x50

*p_char *p_char = ((pchar))

(p_char) = 0x50
((p char))=(0x50)=0x20

*pchar = 0x20

CHAP5 Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3

e) Reégles de manipulation des pointeurs
- on peut ajouter une valeur entiére a un pointeur = nom_pointeur + valeur enti¢re
- on peut soustraire une valeu entiére d'un pointeur = nom_pointeur - valeur enticre

Valeur_entiere peut étre :
- une constante entic¢re
- une variable de type char, unsigned char, int ou unsigned int

En savoir plus
Pour calculer 1'adresse pointée par ces deux opérations, il faut tenir compte de la taille du type pointé.
adresse pointée = (@nom_pointeur) * (taille_type pointeur * valeur_entiere)

Conseil d'utilisation des pointeurs
Nous conseillons d'utiliser les parenthéses (*nom_pointeur) pour éviter des ambiguités d'interprétation dues a la priorité entre opérateurs.

Relations Pointeur — Tableau
Rappel : nous avons déja dit que le nom du tableau est I'adresse du tableau
On peut donc considérer que le nom d'un tableau est un pointeur qui contient I'adresse fixe du tableau.

Considérons la déclaration | on peut écrire :
unsigned int tab_ui[5]; p_uint = tab_ui; /I p_uint recoit l'adresse de tab_ui
unsigned int *p_uint; p_uint = &tab ui[indice]; // p_uint recoit l'adresse de tab _ui[indice]

Considérons :
p_uint = tab_ui; // p_uint recoit l'adresse de tab_ui

Les écritures suivantes sont indentiques

tab ui[indice] = *(p_uint+ indice) // 1a parenthese est obligatoire pour éviter 'ambigiiité
tab_ui[2] = p_uint[2] /] sans *
p_uint[2] = *(p_uint +2)

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 5

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3

Les Fonctions en langage C

Une fonction est une entité qui peut étre autonome.
C'est un élément important de la structuration d'un programme.
On peut considérer qu'une fonction est un composant comme en électronique numérique

Paramétres et Notion d'entrée, de sortie et d'entrée-sortie
Les parameétres d une fonction peuvent €tre classés en 3 groupes que nous ramenerons a groupes
- Groupe 1 : le parametre n’est pas modifié¢ pour le programme qui appelle la fonction. On dit que c’est une entrée.
- Groupe 2 : le parametre est modifi¢ pour le programme qui appelle la fonction. On dit que c’est une sortie.
- Groupe 3 : le parametre est utilisé dans la fonction comme une entrée et peut tre modifié pour le programme qui appelle la fonction. On dit que c’est
une entrée-sortie.

Remarque :
- la sortie et I’entrée-sortie peuvent &tre regroupées.
- Ce parametre doit utiliser le pointeur pour indiquer I’adresse de la variable que le programme appelant veut faire modifier.

c- Notion de paramétres formels
Un parametre formel est une variable qui apparait dans I’entéte de la fonction.

Cette variable peut étre utilisée dans la fonction comme toute autre variable.
Si le paramétre est de type entrée alors la variable associée est une variable locale

Déclaration d’un paramétre formel d’entrée
Type nom paramétre entree

Déclaration d’un parameétre formel d’entrée-sortie ou de sortie
Type* nom_paramétre entree sortie souvent notée Type *nom paramétre entree sortie

d- Variable locale
Une variable locale est une variable déclarée dans la fonction.
Elle n’est vue que dans la fonction méme si elle a le méme nom qu’une variable globale.

Nous conseillons cependant pour des raisons de lisibilité de ne pas donner le méme nom a des variables locales et globales.

e- Variables globale
Nous interdisons de ne pas utiliser les variables globales dans les fonctions saf cas trés particulier

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 7

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3

f- Structure d'une fonction

Définition d'une fonction (création d'une fonction)
La définition d'une fonction correspond a la création de la fonction.
Fonction sans un retour

void nom_fonction (déclaration des parametres formels)

{ // déclaration des variables locales

// corps de la fonction

Prototype d'une fonction :

void nom_fonction (déclaration des parametres formels);

Fonction avec un retour
type retour nom_fonction (déclaration des parametres formels)

{ // déclaration des variables locales

// corps de la fonction
return(valeur);

}

Dans ce cas, on doit trouver return dans la fonction.
Nous conseillons de n'avoir qu'un seul return

Prototype d'une fonction :

type retour nom_fonction (déclaration des parametres formels)

g) Utilisation (appel) d'une fonction

g-1) L’utilisation de la fonction consiste a :

- a appeler la fonction en remplagant les paramétres formels par les paramétres effectifs.

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3

- a utiliser éventuellement le résultat de la fonction
Le paramétre effectif est la variable ou la constante qui remplace le paramétre formel.

g-2) Passage de parametres
Le remplacement du paramétre formel par le paramétre effectif est appelé passage de parameétres

Ce passage doit respecter certaines regles :
- 'ordre des parametres formels
- le type des parametres formels et effectifs : ces types doivent étre compatibles

g-3) Syntaxe d'utilisation
Deux cas :

Pas de retour, I'appel sera
nom_fonction sans_retour(passage de parametres);

Avec un retour, l'appel sera
resultat = nom_fonction avec retour(passage de parameétres);

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3

Composant logiciel en langage C

Un composant en langage C est une fonction avec valeur de retour ou pas.
Il comporte deux parties :
- la vue externe appelée aussi interface, ce sont les entrées-sorties du composant. En d'autres termes, ce sont les paramétres formels de la fonction et la valeur de
retour éventuelle.
- la vue interne, c'est le comportement de la fonction. En d'autres termes, c'est la suite d'instructions qui décrit ce que fait la fonction.

Représentation
Nous allons représenter les fonctions comme des composants avec une vue externe que nous allons utiliser dans les organigrammes

a) Représentation graphique
Dans cette représentation,
& chaque parametre formel posséde un nom formel associé a un type.
¢ pour char, uc pour unsigned char 1 pour int, ui pour unsigned int
f pour float d pour double 1 pour long et ul pour unsigned long

& chaque parametre formel posséde une fléche pour indiquer le sens du paramétre

Paramétre formel
entrée sortie Entrée-sortie | retour

L] L

Le paramétre entrée-sortie de type pointeur s'écrit comme un paramétre de sortie seule de type pointeur ou type tableau.
Schéma général de la représentation

Remarques importantes
Te nom_ formel entrée retour(Type) —p .
a) Nous avons mis a gauche les paramétres

}Tes* p_nom formel es formels en entrée, en sortie et entrée-sortie
puis a droite le retour de la fonction

1y

Nom_fonction

a) Il est conseillé d'éviter l'utilisation des

Prototype : variables globales.
Type nom_fonction (Te nom_formel_entree,
Tes* p_nom_formel_es) b) Pour des raisons de lisibilité, nous proposons
. . de faire précéder par p le nom des
Te = type du parametre d'entree paramétres formels en sortie ou en entrée-

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 11

sortie. Ceci permet de voir directement que le

Tes = type du parameétre de sortie ou d'entrée-sortie . :
parametre formel est un pointeur.

Littérale : fonction prototype type Nom_fonction (type nom_formel entree,
type *p_nom_formel es)

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 12

Passage de paramétres
Le passage de paramétres consiste a connecter des parametres effectifs aux parametres formels et en respectant I’ordre de remplacement.

Un parameétre formel en entrée peut étre connecté 2 un parameétre effectif qui peut étre :
- une constante notée en langage C valeur
- un contenu d'une variable noté en langage C nom_variable

Un parametre formel pointeur peut étre connecté a un parametre effectif qui peut étre :
- ’adresse d'une variable notée en langage C &nom_variable ou nom_tableau
ou &nom_structure
- le contenu d'un pointeur (pointant le méme type) noté nom pointeur

Schéma de principe du passage de paramétres
Le schéma consiste a indiquer :
- a l'intérieur du cadre de la fonction :
* le nom de la fonction
* les paramétres formels avec leur type associé
* ¢ventuellement les entrées physiques, les sorties physiques et les variables globales (méme si elles sont déconseillées)

- a l'extérieur du cadre de la fonction
* les paramétres effectifs
* les connexions des entrées physiques, des sorties physiques et des variables globales.

Exemple de représentation avec passage de parameétres

Exemple général

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 13

1
valeur ! , resultat
. Te nom formel entrée retour(Type) —»
nom_variable [| I - - ur(Type)
1

&nom_variable
nom_pointeur
nom_tableau

Tes* p_nom formel es

&nomtableau[0]
nom_pointeur
nom_tableau

Tes nom_tab[]

Tes nom_tab 2d[][n]

Nom_fonction

&nom_tableau[0][0]
nom_pointeur B
nom_tableau E

Prototype :
1l permet de définir l'ordre de passage des paramétres

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 14

Utilisation d'une fonction

Utiliser une fonction consiste a :
- a placer le composant dans la séquence de traitement

- connecter le composant, c'est-a-dire appeler la fonction avec un passage de parameétres.
La connexion des paramétres effectifs sur les parametres formels se fait en respectant l'ordre des paramétres formels dans la fonction prototype et en remplagant

chaque parametre formel par le paramétre effectif correspondant.
- exploiter éventuellement le résultat fourni par la fonction.

Exemples

Nom effectif entree
_ .)

&Nom effectif es
- — <«—»|Tes *p_nom formel es

Te nom_formel entrée

resultat
Nom_fonction retour(Tr) —

type _retour Nom_fonction (type nom_formel entrée, type *ptr nom_formel es)

resultat = Nom_fonction (nom_effectif entrée, &nom_effectif es)

Codage
Le codage consiste a traduire la description graphique en programme en langage C.
La démarche que nous proposons permet d’automatiser la traduction de la connexion graphique ou littérale formelle en instructions du langage C a partir de la description

- graphique
- littérale formelle

Nom_effectif entree .
- - Te : nom_formel entrée

!

Graphique &Nom_effe(:tlf_'3547(> Tes : (*ptr_nom_formel_es)

resultat
Nom_fonction Tr: valeur retour 7L>

Fonction prototype :
type retour Nom_fonction (type nom formel entrée, type *ptr nom formel es)

Littérale formelle Connexion littérale formelle

Resultat = Nom fonction (nom effectif entree, &nom effectif es)

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 15

Exemples de passage de parameétres par valeur

schéma

Codage en langage C

Le parametre effectif est une constante

constante |

type param_val

fct param valeur

ret(type)

result
>

prototype type fct param_valeur(type param_val);

result = fct_param_valeur(constante);

Le parametre effectif est une variable

nom_variable |

type param_val

fct param_valeur

result
ret(type)

prototype type fct param_valeur(type param_val);

result = fct_param_valeur(nom_variable);

Le parametre effectif est une case d'un tableau

nom_tab[ind] | type param_val result | result =fct param valeur(nom_tab[ind]);
ret(type) >
fct param_valeur
prototype type fct param_valeur(type param_val);
Le parametre effectif est une variable pointée
*pointeur —®| type param_val result result = fct_param_valeur(*pointeur);
ret(type) >

fct param valeur

prototype type fct param valeur(type param val);

CHAP5 Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3

Exemples de passage de paramétres par adresse Il faut toujours passer une adresse

Format paramétre formel

Parameétre effectif

Schéma et codage en C

Type *p_nom_formel

Une variable

Nom_variable

Schéma

; —»
&nom_variable 7| type *p nom_formel result

ret(type) >

fct param_adresse

Une d'un

tableau

case

nom_tab[ind]

Prototype : type fct param_adresse(type *p nom_formel);
Codage en C :
result = fct param_adresse(&nom variable);
Schéma
i —» *
&nom_tab[ind] type *p_nom_formel result
ret(type) >

fct param_adresse

Prototype : type fct param_adresse(type *p nom_formel);

Codage en C :
result = fct param adresse(&nom tab[ind]);

Variable pointée Schéma
: —» *
*nom_pointeur nom_pointeur type *p_nom_formel result
—>
fct param_adresse ret(type)
Prototype : type fct param_adresse(type *p nom_formel);
Codage en C :
result = fct param_adresse(nom_pointeur);
Un tableau Schéma
—» *
Nom _tableau nom_tableau type *p_nom_formel result
ret(type) >

fct param_adresse

Prototype : type fct param_adresse(type *p _nom_formel);

Codage en C :
result = fct param_adresse(nom_tableau);

CHAP5 Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3 17

Type nom_tableau(]

Un tableau

Nom_tab

Schéma

result

nom_tab | type nom_tableau[]
ret(type) [

fct param_adresse

Prototype : type fct param_adresse(type nom_tableau[]);

Codage en C :
result = fct param_adresse(nom_tab);

Variable pointée

Schéma

nom_pointeur ~®| type nom_tableau[] result

*nom_pointeur ret(type)
fct param_adresse
Prototype : type fct param_adresse(type nom_tableau[]);
Codage en C :
result = fct param_adresse(nom_pointeur);
Une case d'un | Schéma
tableau

nom_tab[ind]

result

&nom_tab[ind] ~®| type nom_tableau][]
ret(type) [

fct param_adresse

Prototype : type fct param_adresse(type nom_tableau[]);

Codage en C :
result = fct param adresse(&nom tab[ind]);

CHAP5 Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3 18

Présentation d'une fonction en organigramme

—» Te vl

Nom_fonction Retour(Type) —>

¥ Tes *p V2

variables locales

Organigramme de la fonction

Vue extene de la fonction

—» Te vl Retour(Type) —»

<P Tes *p v2

Nom_fonction

Exemple

—| uc:*p_yetat mae

— uc: *p_ymem_sortie

Gestion_codeur

Variables locales
uc mem_entree;

mem_entree

&mem_entree<|

p_yetat mae < uc:*p_xeta_mae

v

lecture_des_entrées
uc :*p_xmem_entree

-

v

*p_yetat_ mae —»| uc:xetat mae calcul_action_transition

mem_entree —»|UC : Xmem_entree

p_ymem_sortic <€{uc : *p_xmem_sortie

v

—»| uc:xmem_ entree
Evolution_mae

v

calcul_action_etat

v

*p_ymem_sortie—| uc: xmem_sortie

Actualisation_des_sorties

void gestion_codeur(
unsigned char *p_yetat mae,
unsigned char *p ymem_sortie)

unsigned char mem_entree;
lecture des_entrees(&mem_entree);
calcul action_transition(

*p_yetat mae, mem_entree,

p_ymem_sortie);

Evolution mae(mem_entree,
p_yetat mae);

calcul action_etat();

Actualisation_des_sorties(*p tmem sortie

)

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3 19

Les entrées sorties standard

Remarques importantes

a) Les instructions d'entrées sorties standard

En C++
C’est le compilateur
qui fait presque tout

pour vous pour
afficher

En C standard
C’est vous qui devez dire au compilateur
ce que vous souhaitez afficher

Sortie standard

Cout

Ecriture d'un caractére
putchar(char code ascii)

Ecriture d'une chaine de caractéres

puts(char *p_ch)

Ecriture formatée
printf("msg + balises", parameters)

Entrée standard

Cin

Lecture d'un caracteére
getkey(void)
getchar(void)

Lecture d'une chaine de caractéres
gets(char *p ch, ui nb car)

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3 20

Fonctions d'entrées-sorties standard en langage C

Fonctions de sortie standard

La sortie standard du langage C est un écran que nous appellerons terminal
On peut répartir les fonctions de sortie standard en 3 groupes de base :

Affichage :
- d'un caractére
- d'une chaine de caractéres

- formaté : on peut choisir la fagon d'afficher tout type d'information.

A 4

caractere
putchar
IChaine de caractéres _ .
g Terminal

puts

Affichage formatée >
printf

Notation de type pour les composants

¢ = char uc = unsigned char
i =int ui = unsigned int
f = float
Fonctions Exemples
Affichage d'un caractére a) Afficher le caractére A sur I'écran

=¥ c code_ascii
retour(c)
putchar

Prototype :
char putchar(char code_ascii)

putchar('A');

b) Afficher le caractére donc le code ascii est dans la
variable, car, de type char
putchar(car);

Affichage d'une chaine de caractéres

—»{ c* ptr_chaine
retour(int)
puts

Prototype :
int puts(char® ptr_chaine)

a) Afficher la chaine de caractéres "TEST" sur I'écran
puts("TEST");

b) Afficher la chaine de caractéres stockée dans la variable,
tab_car, de type tableau de char
Déclaration

char tab car[20];

puts(tab_car);

Remarque importante:
On doit s'assurer que la chaine, tab_car, se termine par 0x00.
Sinon la fonction affichera des caractéres erronés.

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3 21

Affichage formaté

c* texte et balises

int) >
—| paramétres retour(int)

printf

Prototype :
int printf ("texte et balises", parameétres)

Remarques :
1- Texte est une chaine constante de caractéres.

2- "parameétres" est la liste des variables a visualiser séparées par des virgules.

3- Une balise est une indication de la facon d'interpréter l'information binaire a afficher. Il est noté % suivi
d'un caractere d'interprétation

%c = interprété comme un caractere

%s = interprété comme une chaine de caractéres

%u = interprété comme un entier non signé

%d = interprété comme un entier signé

%x = interprété comme un entier non signé et visualisé en hexadécimal

%f = interprété comme un nombre en flottant visualis¢ sous la forme xxx.yyy

Pour les balises %u, %d, %x on peut préciser le nombre de digits a afficher.

a) les digits manquants sont remplacés par des espaces, si le nombre compte moins de digits a afficher,
syntaxe : %nu %nd %nX ou %nx

b) les digits manquants sont remplacés par des 0, si le nombre compte moins de digits a afficher.
syntaxe : %0nu %0Ond %0nX ou %0nx

c) %f
syntaxe : %n.mf n digits pour la partie enti¢re
m digits pour la partie fractionnaire

4- La balise doit étre compatible avec le type d'information a afficher. On peut cependant utiliser la
conversion explicite (Cast) pour forcer la compatibilité.
Par exemple afficher un unsigned char avec la balise %u peut produire un résultat curieux en fonction du
compilateur. Certains compilateurs assurent des conversions implicites correctes et d'autres pas. En effet,
%u est associé aux entiers donc pour forcer la compatibilité, il suffit de faire un cast de la variable en
écrivant (unsigned int) nom_variable.

5- Certains compilateurs ne supportent pas trop de parameétres dans une seule fonction printf. Il est conseillé
de le faire en plusieurs printf.

6- Quelques caracteres spéciaux utiles :

\n positionner le curseur a la ligne suivante en consevant la colonne
\r positionner le curseur au début de la ligne en cours, donc colonne 0
\0x00 fin de la chalne de caracteres

\g bip sonore

CHAP5 Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 22

Exemples printf

Affichage d'une variable de type char en char

"%CH_»

nom_var_char —¥

¢ msgtbalises

parameétres
printf

printf("' %c", nom_var_char);

Affichage d'une variable de type char en hexadécimal

"%x"—® ¢ msgtbalises

nom_var char —®| paramétres

printf

printf("' %x", nom_var_char);

Affichage d'une variable de type char en hexadécimal

avec un nombre fixé de digits
"%nx*» ¢ msg+balises

nom_var char —® paramétres

printf

printf("' %nx", nom_var_char);

Affichage d'une variable de type char en entier non signé

(unsigned inr) nom_var char —®|

H%ull_>

¢ msgtbalises

parametres
printf

printf("' %u", (unsigned int) nom_var_char);

Affichage d'une variable de type chaine de caractéres

"%s" _> c

nom_chaine = p

msg+tbalises

arameétres
printf

printf("' %s", nom_chaine);

Affichage d'une variable de type int en entier signé

H%d"_’

nom_var_int —

¢ msgtbalises

paramétres
printf

printf("'%d", nom_var_int);

Affichage d'une variable de type int en entier non signé

"%u"_»

nom_var_int —

¢ msgtbalises

parameétres
printf

printf("'%u", nom_var_int);

Affichage d'une variable de type float en float

H%fl _’

nom_var_float —¥

¢ msgtbalises

parameétres
printf

printf("' %f", nom_var_float);

Affichage d'une variable de type float en float avec un

nombre fixé de

digits

"0ex.yf! P

nom_var_float®

¢ msgtbalises

parametres
printf

printf("' %x.yf", nom_var_float);

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3

23

Fonctions d'entrée standard
L'entrée standard du langage C est un clavier.

On peut répartir les fonctions d'entrée standard en 3 groupes .

Lecture :
- d'un caractére
- d'une chaine de caractéres

- formatée :

caractére o 5
/ getchar - _getkey 2
. Chaine de caractéres €
Clavier > =
/ gets g
3
lecture formatée o 5
/ scanf g

Fonctions Exemples

Lecture d'un caractere tapé au clavier sans écho
(sans affichage sur I'écran du symbole du caractere
tapé).

La fonction est bloquante. C'est-a-dire qu'elle
attend jusqu'a ce qu'un caractere soit tapé.

retour(c)
_getkey

Prototype :
char getkey(void)

var_char = _getkey();

Lecture d'un caractére tapé au clavier avec écho
(avec affichage sur I'écran du symbole du caractere
tapé)

La fonction est bloquante. C'est-a-dire qu'elle
attend jusqu'a ce qu'un caractere soit tapé.

retour(c) >
getchar

Prototype :
char getchar(void)

var_char = getchar();

Indication de caractére disponible provenant du
clavier

La fonction est non bloquante. C'est-a-dire qu'elle
n'attend pas qu'un caractere soit tapé.

retour(bit)
kbhit

Prototype :
bit kbhit(void)

if (kbhit())
{ //lire la touche détectée
_getkey(); ou getchar();

}

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3

Lecture d'une chaine de caractéres tapés au
clavier

<4 c* ptr_chaine

—> ui
ui xnb_car retour(* char)

gets

Prototype :
char* gets(char® ptr_chaine,
unsigned int xnb_car)

On doit indiquer :
- la chaine de caractéres ou les codes ascii des
caracteres tapés doivent étre stockés
- le nombre de caractéres acceptés

La fin de saisie de la chaine intervient si on tape :
Enter , Espace

Si on tape :

- moins de caractéres que prévus, la fonction
retourne une chaine de caractéres avec insertion
automatique de \0x00 (fin de la chaine)

- plus de caractéres que prévus, la fonction
tronque a xnb_car -1 et chaine de caractéres
avec insertion automatique de \0x00 (fin de la
chaine)

11 est donc de votre responsabilité de prévoir
suffisamment de places par rapport au nombre
xnb_car.

gets(nom_chaine, nb_car);

Lecture des informations formatées

T
R balises
< * parametresretour(int) [
scanf
Prototype :

int scanf ("balises", paramétres)

Cette fonction fonctionne assez mal pour le
formatage des informations. La moindre erreur de
saisie crée des décalages de gestion du buffer
d'entrée. Par ailleurs, comme la longueur de la
chaine n'est pas précisée, on risque des
débordements mémoires.

Pour lire les informations formatées, nous
conseillons d'utiliser la fonction gets et les fonctions
de conversions comme :

atoi convertir une chaine de caractéres en un
entier signé ou non

atof convertir une chaine de caractéres en un float

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3

Lecture d'un entier tapé au clavier

4 c* ptr_chaine

i
ui xnb_car retour(* char)

gets

Prototype :
char* gets(char* ptr_chaine,
unsigned int xnb_car)

gets(nom_chaine, 5);
entier = atoi(nom_chaine);

Remarque :

S'il y a une erreur, par exemple la saisie d'une lettre,
dans la chaine, atoi retourne 0 sans indiquer
d'erreur.

Lecture d'un entier tapé au clavier avec
vérification des chiffres

Lecture d'un float tapé au clavier

<4 c* ptr_chaine

—> ui
ui xnb_car retour(* char)

gets

Prototype :
char* gets(char® ptr_chaine,
unsigned int xnb_car)

gets(nom_chaine, 8);
entier = atof(nom_chaine);

Remarque :

S'il y a une erreur, par exemple la saisie d'une lettre,
dans la chaine, atoi retourne 0 sans indiquer
d'erreur.

Lecture d'un float tapé au clavier

CHAPS Langage C 2020 2021 v2 suite

A.Nketsa DGEII Toulouse 3 26

Langage C (suite 4)
(Utilisation des masques en informatique embarquée)
- Principe général
- Gestion des capteurs
- Actualisalisation des sorties
En informatique embarquée, les capteurs et les acyionneurs binaires sont souvent regoupés pour formés
des mots (octet ou mot de 16bits)
Lors de I'utilisation, on a souvent besoin de ne tester ou manipuler qu'un ensemble de ces bits.
Pour cela : il faut les isoler pour les manipuler

Nous avons vu lors des instructions logiques que 1'on peut isoler un ou plusieurs bits dans un mot, de
méme en utilisation les instructions booléennes on peut tester ces bits

Rappel
Pour isoler les bits ,
- on construit un masque en ET
- et on effectue l'opération logique ET (&)

Pour tester les bits isolés,
- on construit un masque avec la valeur attendue des bits a tester
- on effectue une comparaison entre le résultat des bits isolés et le masque des valeurs attendues

Pour mettre des bits a 0
- on construit un masque en ET des bits a mettre a 0
- on effectue un ET logique (&) entre le mot et le complément a 1 (~) du masque en ET

Pour mettre des bits a 1
- on construit un masque en ET des bits a mettre a 1
- on effectue un OU logique (|) entre le mot et le masque en ET

Pour compémenter des bits a 1

- on construit un masque en ET des bits a complémenter
- on effectue un OU logique (|) entre le mot et le masque en ET

CHAPS Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 27

Gestion des capteurs

Considérons que nous avons un octet qui regroupe : les capteurs, les interruopteurs et les poussoirs d'un

systéme occupant dans l'octet les positions suivantes :

Variable : octet entree

poussoirs interrupteurs capteurs
B7 B0
Pouss1 Pouss0 Interl InterQ C3 C2 Cl CO0

On admet que les capteurs sont actifs a 0

Gestion des actionneurs

Considérons que nous avons un octet qui regroupe : les actionneurs d'un systéme occupant dans I'octet les

positions suivantes :

Variable : octet sortie

poussoirs interrupteurs capteurs
B7 B0
buzzer siréne moteurl moteur(Led3 Led2 Ledl Led0
On admet que les actionneurs sont actifs a 1
Exercice
si c2=0 et interO0=1 et pouss0 =0
alors allumer la Led2
sinon eteindre la led2 et complémenter la led3
Donc il faut isoler les bits C2, inter0 et poussa dans octet entree
b7 b0
Pouss1 PoussO | Interl Inter0 C3 C2 Cl CO0
Masque en ET (isolement) 0 1 0 1 0 1 0
Msk isole
Masque valeur attendue 0 0 0 1 0 0 0 0
Msk attendu
- masque en ET : 01010100b = 0x54
- masque de test : 00010000b = 0x10
Pour allumer la led2 sans modifier les autres, il faut construire le masque correspondant
b7 b0
buzzer | sirene | moteurl | moteurO | Led3 | Led2 | Ledl | Led0
Masque en ET pour mise a 1 0 0 0 0 0 1 0 0
led2 (msk led2)
Masque pour complémenter 0 0 0 0 1 0 0 0
led3 (msk led3)
CHAPS Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 28

D'ou le programme

Temp = octet entree & msk isole

%mp = msk attendu

octet_sortie = octet_sortie ET (msk led2) octet_sortie = octet_sortie OU msk led2

octet_sortie = octet_sortie OUExcl msk led3

Traduction en langage C
Temp = octet_entree & msk_isole;
if (Temp == msk_attendu)
{
octet _sortie = octet sortie | msk led2;
}
Else
{
octet_sortie = octet_sortie & (~msk led2);
octet_sortie = octet sortie * msk led3;

}

CHAPS Langage C 2020 2021 v2 suite A.Nketsa DGEII Toulouse 3 29

