Polycopiés
Cours Informatique embarquée
GEIl Toulouse 2020 - 2021

CHAP 5 Langage C (Rappel partie 1)

Langage C (Rappel partie 1)
- Variables
- Le pointeur
- Opérateurs
- Instructions

Langage C (Rappel partie 2)
- Fonctions
- Notion de composant logiciel
- Organigramme structuré basé composants

Exemple de traduction d'organigrammes en langage C

Langage C (partie 3)
- Fonctions d'entrées-sorties standard en langage C
- Représentation sous forme de composants logiciels

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3

A. Nketsa

CHAP 5 Langage C
|- (Partie 1 Rappel)

Remarques importantes

I-En S1, vous avez programmé en langage C dans unveronnement de

développement en C++,
Cela ne veut pas dire que vous savez programm@esenparce que en C++ on peut manipuler les objdiss
classes que vous n'avez pas vus.

lI-En S2, nous allons travailler en langage C poufinformatique embarquée dans un
environnement en C.

llI- Conclusion
En S2, nous allons utiliser pratiquement les mém&suctions vues en programmation
gu'en S1

3 points vont un peu changer :
a) Les instructions d'entrées sorties standard

En C++ En C standard
C’est le compilateur C’est vous qui devez dire au compilateur
qui fait presque tout | ce que vous souhaitez afficher
pour vous pour

afficher
Entrée standard | Cin Lecture d'un caractere
getkey(void)
getchar(void)

Lecture d'une chaine de caracteres
gets(char *p_ch, ui nb_car)

Sortie standard | Cout Ecriture d'un caractere
putchar(char code_ascii)

Ecriture d'une chaine de caracteres
puts(char *p_ch)

Ecriture formatée
printf("msg + balises", parameters)

b) Les pointeurs
Vous les avez vus en fin de S1.
Comme c'est upoint trés important en langage C nous y reviendrons

c) Le passage des paramétres d'entrées-sorties dasctions
En S1, vous avez vu le passage des paramétregd®sbrties des fonctions par référence. C'est-a-
dire, pour simplifier, que c'est le compilateur fait la correspondance entre les paramétres fermel
et ceux effectifs.

En langage C dans un environnement de développeandahgage C, c'est le programmeur qui est
reponsable de ce passafe de parametres.
Nous allons y consacrer un chapitre
CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 2

5-1 Langage C

1- Les Variables (Type — Taille — Occupation mémme - Déclaration)

Définition
Une variable est un ensemble de cases mémoirerégmént) consécutives.
A cet ensemble de cases, on associe :

- un nom

- une adresse (c'est l'adresse de la premiére catel'ensemble)

- un contenu

Donc déclarer une variable c'est :
- Donner un nom

- Indiquer la taille de la variable et l'interprétation

- Associer l'adresse de la variable a son nom

Obtention du contenu d'une variable
Pour obtenir le contenu d'une variable,

il suffit d'indiquer lenom de la variable

Obtention de I'adresse d'une variable
Pour obtenir I'adresse d'une variable,

il suffit d'utiliser I'opérateu&
Exemple : &hom_variable donne l'adresse de la variable appal@®_variable

Taille des variables sur microcontréleur courant

Nom du type commentaire taille intervalle
char Nombre signé 8bits -128 a +127
(loctet =
case méemoire)
unsigned char | Nombre non signé 8bits 0a 255
int Nombre signé 16bits -32768 a +32767
unsigned int Nombre non signé 16bits 0 a 65535
long Nombre signé 32bits -2147483648 a -+21474836
unsigned long 32bits 0 & 4294967295 ={>-1)
float 32bits =-10% a +16°

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3

2- Variables de types scalaires (simples)

1- Déclaration :
Syntaxe générale . typenom_variable= valeur_initiale (optionnelle);

2- Organisation mémoire des variables et stockage

Base de stockageactet

Pour une lecture simple, la notation en hexadécimaldes valeurs est conseillée

Exemple
le mot de 16bits 0x5421 =ypoids fort = 0x54 poids faible = 0x21

Stockage de mots de plus de 8bits(octet) dans lamere :
a) Modelittle endian : poids faible puis poids fort dans I'ordre asant des adresses

adresse | Type Taille Nom variable contenu applioatio
+0 int ou 2 Nom_variablg Poids faible

+1 unsigned int Poids fort

Exemple

unsigned int mot_16bits = 0x5421;

adresse Type Taille contenu contenu applicatiL)n
+0 int ou 2 mot_16bits Poids faible 0x21

+1 unsigned int Poids fort 0x54

Stockage de mot de 16bits : little Endian

Exemple mot = Ox55AA
adresse unsigned int mot =0x55AA
nom variable |—{ Octét_poids faible| Nom variable | adresse contenu
- } Mot mot 0x51 | OxAA
octet_poids fort | +1
0x52 0x55

Stockage de mot de 32bits : little Endian

Exemple mot 32bits=0x00FF55AA

adresse float reel = OXOOFF55AA
nom variable »| Octet_poids faible| | o Nom adresse| contenu
octet_poids fort | } Mot poids faible | | \/5riaple
octet_poids faible| +2 reel 0x100 | OxAA | Mot
octet_poids fort | +3 JL Mot poids fort 8?18; 8;2'5: IF\)/IOCI)?S faible
0x103 0x00 poids fort

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 4

b) Modebig endian: poids fort puis poids faible dans I'ordre esant des adresses
adresse | Type Taille Nom variable contenu applioatio
+0 int ou 2 Nom_variablg Poids faible
+1 unsigned int Poids fort
Exemple
unsigned int mot_16bits = 0x5421;
adresse Type Taille contenu contenu applicatiL)n
+0 int ou 2 mot_16bits Poids fort 0x54
+1 unsigned int Poids faible| 0x21

Exemples de déclaration des variables simples (saaks)

char caractere, octet_sg; //taille 1 octet valir entre -128 et +127
unsigned char octet_ns; /[taille 1 octet valewentre O et 255
int mot_sg_16bits /[taille 16bits = 2 octets

Il valeur entre -32768 et +32767
unsigned int mot_ns_16bits // taille 16bits = 2abets

/l valeur entre 0 et +65537
float nb_reel, Il taille 32bits = 4 octets 2 mots de 16bits

Il Valeur -10%® 3 +10°%

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 5

3- Variables de type structuré

1- Définition et types structurés
Une variable de type structuré est une variableegroupe sous une appelation plusieurs variables :
- de méme type, c'est un tableau

- de types différents, c'est une structure

Nous ne traiterons que de la variable structurée dgy/pe tableau

2- Tableau a une dimension

Déclaration:

Sans valeur initiale :
type nom_tableau[nombre_eléments];

Avec valeur initilae :
type nom_tableau[nombre_eléments] =(optionnelle) {valeitrales, };

Exemple

Sans valeur initiale

Organisation du tableau

unsigned char tab_uc[3]; tab_uc tab_ucl[0]
tab_uc[1]
tab_uc[2]

Avec valeur initiale Organisation du tableau

unsigned char tab_uc[3] = {0x20, 0x41, 0x45}, tab_uc 0x20 tab_uc[0]
0x41 tab_ucl[1]
0x45 tab_uc[2]
3- Tableau a deux dimensions
Déclaration :
Sans valeur initiale :
type nom_tableau[nombre_ligne][nombre_colonne];
Avec valeur initiale :
type nom_tableau[nombre_ligne][nombre_colonne] ={ gl initiales}, };
Exemple
Sans valeur initiale Organisation du tableau
unsigned int tab_ui[2][2]; tab_ui| tab_ui[0] | tab_ui[0][0] | Ligne O
tab_ui[0][1]
tab_ui[1] | tab_ui[O][0] | Ligne 1
tab_ui[0][1]
Avec valeur initiale Organisation tableau
int tabi[3][2] = {{25, -30},{46,00},{100,1}} tabi tabi[0] tabi[0][0] 25 Ligne0
colonne0 colonnel tabi[0][1] -30
ligneO tabi[0][0] tabi[0][1] tabi[1] tabi[1][0] 46 Lignel
lignel tabi[1][0] tabi[1][1] tabi[1][1] 00
ligne2 tabi[2][0] tabi[2][1] tabi[2] tabi[2][0] 100 | Ligne2
tabi[2][1] 1
CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 6

3- Acces aux éléments d'un tableau a une dimension

Désignation de tout le tableau:
nom du tableau

Désignation d'une case du tableau :
nom_tableau[indice] avecindice < nombre d'éléments du tableau

4- Acces aux éléments d'un tableau a deux dimensmn

Désignation de tout le tableau:
nom du tableau

Désignation d'une case du tableau :
nom_tableau[ligne][colonne] avexOigne < nombre de lignes du tableau
avec & colonne < nombre de colonnes du tableau

Désignation d'uneligne su tableau:
nom_tableau[ligne] avecJligne < nombre de lignes du tableau

Remarque importante :
- Le nom du tableau représefi@dresse du tableau
- L'adresse du tableau est I'adresse de la premiémase du tableau
- pour un tableau a 1 dimension
nom_tableau = &nom_tableau[0O]

- pour un tableau a 2 dimensions
nom_tableau &nom_tableau[0][0]
nom_tableau[0] pour la premiere ligne

Cas particuliers des chaines de caracteres
Définition :
Une chaine de caracteres est un tableau a 1 diomeqsi :

- contient des codes ascii,

- et se termine par Eeparateur 0x00

Notation
- le code ascii d'un symbole est noté entre apoisé® : 'symbole’
Exemple ‘A codes ascii de A

- une chaine de caracteres est notée entre guileme : "suite de symboles”
Exemple: "ABCD"

char chaine[6} "ABCD";

chaine | chaine[0] | chaine[l] chaine[2]| chaine[3]| chaine[4]| chaine[5]
‘A’ ‘B’ 'C' 'D’ 0x00 | Non défini

Fin de la

chaine

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 7

1-3 Type pointeur

a) Définition

Un pointeur est une variable qui contient I'adressel'une autre variable.

Autrement dit un pointeur contient unezaleur qui ne peut étre interprétée que commeadresse

Plus simplement, on dit qu'un pointeur contiemirégse d'une autre variable que I'on appelle ariab
pointée.

b) Déclaration d'un pointeur
Sans valeur initiale :
type* nom_pointeur; I/l notée plus couramment pety *nom_pointeur;

Avec valeur initiale :
type* nom_pointeur=adresse;

c) Compréhension
1) le pointeupointe sur une variable dméme type que celui de la déclaration de la variadél

2) nom_pointeur est la varialpeinteur qui contient Adressede la variable pointée
3) *nom_pointeur est leontenude lavariable pointée
4) nous conseillons de noter le pointeur sousraégp_nom pour le différencier des variables

standard
5) Exemple : Schéma
unsigned char octet = 0x50; Nom_variable adressecontenu| interprétation
unsigned char *p_octet; octet 0x100 | 0x50 Valeurs des
0x101 | 78 variables
0x102 | 0x54
p_octet 0x103 | 0x100 | Adresse de la
0x104 variable
pointée
5-1) Schéma

Adresse p_octet = 0x103

b0 CtetContenu p_octe®.
= 0x100 Adresse octet 2,0x100
Adresse de octet

octet| Contenu octet
char* = 0x50
octet = (*p_octet)

char

5-2) le contenu de p_octet @€t100 = adresse variable pointée

5-3) le contenu d&p_octet est le contenu de la variablgui se trouve a I'adres8g100donc le
contenu de la variable octet

5-4) Conclusion (*p_octet) = 0x50

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 8

d) Régles de mainpulation des pointeurs

- on peut ajouter une valeur entiére a un pointeut> nom_pointeur + valeur_entiére
- On peut soustraire une valeu entiére d'un pointexrl nom_pointeur - valeur_entiere

Valeur_entiére peut étre :
- une constante entiere

- une variable de type char, unsigned char,untresigned int

En savoir plus

Pour calculer I'adresse pointée par ces deux opésail faut tenir compte de taille du type pointé
adresse pointée = (hom_pointeug (taille_type_pointeur * valeur_entiere)

Conseil d'utilisation des pointeurs

Nous conseillons d'utiliser les parenthé&esm_pointeur) pour éviter des ambiguités d'interprétation
dues a la priorité entre opérateurs.

Relations Pointeur — Tableau
Rappel : nous avons déja dit querem du tableauestl'adresse du tableau

On peut donc considérer que le nom d'un tableaunegbinteur qui contient I'adresse fixe du
tableau.

Considérons la déclaration | on peut écrire :
unsigned int tab_ui[5]; | p_uint =tab_ui; /I p_uint recoit I'adresse ale i
unsigned int *p_uint; p_uint = &tab_ui[indice]; // p_uint recoit I'ades de tab_ui[indice]

Considérons :

p_uint = tab_ui; /[p_uint recoit I'adresse de ta

Les écritures suivantes sont indentiques
tab_ui[indice] = *(p_uint + indice) I la parenthése est oblaga pour éviter I'ambiguité
tab_ui[2] = p_uint[2] /] sans *
p_uintf2] = *(p_uint+ 2)

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 9

2- Les opérateurs

a) Arithmétiqgues de base (+, -, *, /)

Opérateur Interprétation Syntaxe commentaires

+ (binaire) addition X+y

- (binaire) soustraction X-Yy

* (binaire) Multiplication X*y

/ (binaire) Division entiére xly Quotient de x/
% (binaire) modulo X%y Reste de la division emig / y
+ (unaire) Signe positif + X

- (unaire) Signe négatif - X

* (una!re) Incrémentation apres XT¥

+ (unaire) avant ++X

- (unaire) Décrémentation apres X

- (unaire) avant --X

Hiérachie des opérateurs
Régle simple :utilisation des parenthéses pour expliciter lewal

b) Affectation
Opérateur Interprétation Syntaxe commentaires
= Affectation simple X=Y;
x = formule
(opérateur) =| Affectation composée X operateur =y; | X =X opérateury;

c) Opérateurs mathématiques
Les opérateurs mathématiques sont des fonctiortsotarecupére les résultats.

Exemples de fonctions

librairies

fonction

interprétation

#include <math.h>

float pow (floag floaty);

Resultat = X

float sin (floatx);

Résultat = sin (x)

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDGd&ulouse 3

10

d) Opérateurs logiques

Définition

Un opérateur logique permet d'effectuer une op@rdtigique entre les bits de méme rang dans les
opérandes sans report.

Exemple :

Va |a7|ab| ab|a4| a3|a2| al| a0

op | v

Vb | b7| b6 | b5| b4 | b3| b2| bl| b0

a’|a6|ab|ad4|a3|a2|al| a0
Vaop Vb op|op|op|op|op|op|op|op
b7| b6| b5| b4| b3| b2|bl| b0

Opérateurs logiques de base

Opérateur Interprétation Syntaxe | commentaires

~(unaire) Pas ~X

&(binaire) ET X&Y

| (binaire) ou X|Y

A (binaire) OU exclusif XY

Opérateurs logiques de décalage

>> (binaire) | Décalage a droite X >> g Décalage a droite de a position
Exemple

Va |a7| a6l a5|ad4| a3| a2|al| a0

Va>>1
O™ 0O|a7|a6|ab|ad| a3|a2|al[—*

<< (binaire) | Décalage a gauche Y <<pb Décalageualgade b position
Exemple

Vb | b7 | b6| b5| b4| b3| b2| bl| b0

Vb<<1
“ b6|b5|bd| b3| b2{bl| bO|] O* O

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 11

Utilisation des opérateurs logiques en informatiquéndustrielle et/ou
embarquée

Principe
Définir le masque d'isolement des bits concernés

= mettre 1 dans la position des bits concernés epOur tous les autres bits
Nous l'appellerons masque en ET que nous noterons masque_ET

Exemple considérons une variable de 8bits, défininasque en ET pour les bits 7, 4 et 0
masque_et = 0b10010001 = 0x91

Nous pouvons aussi définir un masque en OU que matiesons masque_OU pour lequel on met O
dans la position des bits concernés et les auttes a

a) Mise a 1 d'un ou plusieurs bits d'un mot
Effectuer un OU logique entre le mot et le masdjiswlement

Principe :
- définir le masque en ET
- faire OU logique entre le mot et le masque &n E

Exemple . .) Va |a7|a6|a5|ad4| a3| a2| al| a0
mettre & 1 les bits 5, 3 et 1 de la variable va ou l l
- masque_ET =0b00101010 = Ox2A
- effectuer le OU Va | masque ET Masque_ET| 0 |0 |1 |O |1]0 |1]O

Resultat |a7|a6| 1 | a4/ 1|a2| 1| a0

b) Mise a 0 d'un ou plusieurs bits d'un mot
Effectuer un ET logique entre le motl@icomplémentdu masque en ET

Principe :
- définir le masque en ET
- faire ET logique entre le mot et le complémdunimasque en ET

Exemple . _ _ Va a6|a5|a4| a3l a2|al| a0
mettre a 1 les bits 7, 6 et 0 de la variable va ET
- masque_ET =0b11000001 =0xC1

-~masque_ET ~ =0b00111110 = Ox3E | ~Masaue_ET
- effectuer le ET Va &masque_ET

O leH© ¥
o
[
[
[
[
[
Io 1 O [o

Resultat

c) Complémentation d'un ou plusieurs bits d'un mot
Effectuer un OU EXCL logique entre le mot et lesaize en ET

S=AIB=AB+AB donc B=0 = S=A
B=1 = S=A
Principe :
- définir le masque en ET
- faire OU_exclusif logique entre le mot et lasgue en ET

Execr:npler ter 4 1 les bits 7. 6 6t 0 de | bl Va |a7|a6|a5|a4| a3| a2|al| a0
omplementer a1 les bits 7, 6 e e la vazia
OU EXCL
- masque ET = 0b11000001 = 0xC1 l l
- effectuer le ET Va ~masque_ET Masque_ET|1 |1 |0 |0 |O O |O |1
I I
v v
Resultat |(a7|a6|1 |a4| 1 |a2| 1 |a0

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 12

e) Opérateurs Booléens
Définition
Les opérateurs booléens sont les opérateurs pmudts, le résultat produit est un booléen.

Remarque :
Un booléen est une valeur vrai ou faux

Pour une présentation simple, nous allons répartites opérateurs booléen en deux groupes
- Opérateurs booléens simples

- Opérateurs booléens composés

Opérateurs Booléens simples

Opérateurs de comparaison

Un opérateur de comparaison permet d'effectueopéeation de soustraction suivie d'une prise desidéc
booléenne (Vrai — Faux). On dit aussi qu'il produntrésultat booléen.

Opérateur Interprétation Syntaxe | commentaires
== egalité

I= différent

< Inférieur (plus petit)

<= Inférieur ou égal

> supérieur (plus grand)

>= supérieur ou égal

Exemple

Opérateurs Booléens composés
Opérateurs booléens pour la combinaison
Un opérateur booléen permet d'effectuer des fomstiogiques entre booléen pour obtenir un réshtatéen.

Opérateur Interprétation Syntaxe | commentaires
I(unaire) Pas (NON)

&&(binaire) | ET booléen

|| (binaire) OU booléen

Exemple

On considere la variable unsigned int motl, on veuester
a) si les bits pairs sont tous a 0

b) si les bits 15, 13, 10, 8,4 et 2 sont respeementa 0,1,0,0,1etl

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 13

Opérateurs d'acces a la mémoire

opérateur interprétation syntaxe commentaire
& Obtention de I'adresse de &nom_variable Fouraidiesse de nom_variable
* Indirection (contenu du contenu) *ptr ptr poirsigr une variable

ptr contient 'adresse de la variable
(*ptr) contient la donnée

Autres opérateurs

opérateur interprétation syntaxe commentaire
(type) Cast forcage de l'interprétation | (int) var_char Interpréte var_char comme un ersigné
(int)
siezof Taille d’une variable en nombre| Sizeof(var_int) | Nombre de bits de la variable var i
de bits
?:: Evaluation conditionnelle v?z:t SHO
alors y
sinon t

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 14

Instructions
Fonctions

Notion de composant logiciel

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDGd&ulouse 3

15

1- Affectation

L'instruction d'affection consiste a transférer unfermation ou le résultat d'une expression dares u
variable.

dest = source; ou dest = expression;

Expressionest une formule utilisant différents opérateurs
Une instruction d'affectation peut donner lieu & denversions implicites

2- Conversions implicites
Une conversion implicite de type est une conversitectuée automatiquement par le compilateur soit
pendant les calculs soit lors de I'affectation.

Régles de conversions implicites

- Sans perte d'information
Des types les moins précis vers les plus précis
Char - int - long - float

Exemple

Considérons les déclarations

char car;

int v_int;

float reel;

on peut écrire sans perte de precision :

v_int = car; // poids fort de v_int = 0x00 @iqs faible de v_int = car
reel =car, /Il la partie entiere de reel = car

reel =v_int; /' la partie entiére de reel =nt_i

- Avec perte possible d'information
Des types les plus précis vers les moins précis
float - long - int - char

Exemple

Considérons les déclarations

char car;

int v_int;

float reel;

on peut écrire sans perte de precision :

car =V_int; /[car = poids faible de v_int ddeqoids fort est perdu
car = reel; /' la partie fractionnaire perdet |reel| doit étre < 256

v_int =reel, /I la partie fractionnaire perdwst |reel| doit étre < 65536

- pour les arguments d'une fonction, les conversiorimplicites sont automatiques

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3 16

3- Conversions explicites (cast)
Objectif :
Une conversion explicite a pour objectif de forieetype d’une variable pour une untilisation donnée

Syntaxe
(type souhaitéenom_variable

Exemple
Considérons les déclarations
char car;
int v_int;
float reel;
on peut écrire sans perte de precision :
(int) car /I considérer car comme un int au liewd char
(int) reel /I considérer reel comme un int au lileuun float

(float) v_int // considérer v_int comme un floatleau de un int

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3

17

4- Instructions de structure de contrble
Remarque importante :
Dans les instructions de contrdle, condition est pression booléenne.

a) Choix simple (Bloc_si)

| actions_sinoH actions_alorsis

v

Traduction en C

if (condition)

{

actions_alors

}

else

{

actions_sinon

}

Traduction en C

if (condition)

{

actions_alors

}

b) Choix multiple

switch (choix)
= { case choix1 : action_choix1
case choix1 : action_choix1
break ;
case choix2 : action_choix2
break ;
ccns_on]
case choixn : action_choixn
[actions par defalit break ;
default . action_defaut
v }
Autre représentation
Bloc cas
choix
choix1 choixn autre
| action_choix1| | action_choixn| | action_autre|
|
v
c) Boucles
c-1 Repeter
Repeter jusqu'a condition Repeter tantqueliton

| Bloc_repéter] | ;. | Bloc_repéter2 | | 4,
{ {

action_repeter actions_repetef

<condition=

| actions_repeter|

action_repeter

while (!(condition)) ; while ((condition)) ;

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3

18

c-2 Tant que et Pour

Tant que

| Bloc_tantque |

while (condition) ;

I: {
action_tant_que
| actions_tantqu+ }
Pour
[] Remarque :
Bloc pour La structure de contrdle pour est un cas particdiecelle de tant
initialisation que.

[P
<

Q actions_pour

I
Actions_finpour

|

for (initialisation; condition_pour; actions_fin_pQ
{

Actions_pour
}

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 19

5- Les Fonctions en langage C

a- Définition

Une fonction est une séquence d'instructions que feut appeler autant de fois que I'on veut poar s
exécution.

La fonction est identifi€ée par un nom

Pour lui permettre d’effectuer différents traitertsgron lui associe des parametres :
- dit formels a la construction
- dit effectifs a 'utilisation.

La fonction peut retourner ou pas une valeur.

Une fonction est une entité qui peut étre autonome.
C'est un élément important de la structuration d'unprogramme.

b- Parameétres et Notion d'entrée, de sortie et d'dérée-sortie
Les paramétres d’une fonction peuvent étre class&sgroupes que nous ramenerons a groupes
- Groupe 1 : le parameétre n'est pas modifié pourdgm@mmme qui appelle la fonction. On dit que
c’est une entrée.
- Groupe 2 : le parameétre est modifié pour le pnogna qui appelle la fonction. On dit que c’est
une sortie.
- Groupe 3 : le parametre est utilisé dans la fonatmmme une entrée et peut étre modifié pour le
programme qui appelle la fonction. On dit que clgst entrée-sortie.

Remarque :
- la sortie et I'entrée-sortie peuvent étre regems
- Ce parametre doit utiliser le pointeur pour indigl’adresse de la variable que le programme
appelant veut faire modifier.

c- Notion de paramétres formels

Un paramétre formel est une variable qui appagis dentéte de la fonction.
Cette variable peut étre utilisée dans la fonctiomme toute autre variable.

Si le parametre est de type entrée alors la variaisdociée est une variable locale

Déclaration d’'un paramétre formel d’entrée
Type nom_paramétre_entree

Déclaration d’'un paramétre formel d’entrée-sortie a1 de sortie
Type* nom_paramétre_entree_sortie

d- Variable locale
Une variable locale est une variable déclarée afmction. Elle n’est vue que dans la fonctiommeési
elle a le méme nom qu’une variable globale.

Nous conseillons cependant pour des raisons dditiside ne pas donner le méme nom a des variables
locales et globales.

e- Variables globales
Une variable globale est une variable déclaréecbiord des fonctions et du main. Elle peut étrepare
toutes les fonctions et le main si elle est déelanéant les fonctions

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 20

f- Structure d'une fonction

Définition d'une fonction (création d'une fonction)
La définition d'une fonction correspond a la créatile la fonction.
fonction sans un retour

void nom_fonction (déclaration des paramétres formels

{ /I déclaration des variables locales

/I corps de la fonction

fonction avec un retour
type_retour nom_fonction (déclaration des paramétres formels
{ /I déclaration des variables locales

/I corps de la fonction
return(valeur);
Dans ce cas, on doit trouver return dans la fonctio
Nous conseillons de n'avoir qu'un sexdturn

g) Utilisation d'une fonction

1) Définition
L'utilisation de la fonction consiste a appelefdaction en remplacant les paramétres formelsgmparamétres
effectifs.

2) Notion de paramétres effectifs
Un parametre effectif est la variable ou la constaui remplace le paramétre formel.

3) Passage de parametres
Le remplacement du paramétre formel par celui tarpatre effectif est appep@assage de parameétres
Ce passage doit respecter certaines regles :

- I'ordre des parametres

- le type des paramétres formels et effectifs

4) Syntaxe d'utilisation
Deux cas :

Pas de retour, I'appel sera
nom_fonction_sans_retour(passage de parametres);

Avec un retour
resultat = nom_fonction_avec_retour(passage dapetres);

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 21

6- Composant logiciel en langage C
1- Définition
Un composant en langage C est une fonction avetvde retour ou pas.
Il comporte deux parties :
- la vue externe appelée aussi interface, ce ssneiitrées-sorties du composant. En d'autres terogesont
les parametres formels de la fonction et la vadleuretour éventuelle.

- la vue interne, c'est le comportement de la foncteEn d'autres termes, c'est la suite d'instastiqui décrit
ce que fait la fonction.

2- Représentation
Nous allons représenter les fonctions comme depasamts avec une vue externe que nous allonseutilens
les organigrammes

a) Représentation graphique
Dans cette représentation,
@ chaque parametre formel posséde un nom formel assé@ un type.
¢ pour char, uc pour unsigned char pour int, ui pour unsigned int
f pour float d pour double | pdoing et ul pour unsigned long

@ chaque parametre formel possede une fleche pour iigler le sens du paramétre

Parametre formel
entrée sortie Entrée-sortie retour

o N T

Le paramétre entrée-sortie de type pointeur s'éonitme un parametre de sortie seule de type poiotetype
tableau.

Schéma général de la représentation

Remarques importantes

, a) Nous avons mis a gauche les paramétre
—>Te nom_formel_entrée retour(Type)—» formels en entrée, en sortie et entrée-sarti
2 }Tes* p_nom_formel_es puis a droite le retour de la fonction
Nom fonction a) Il est conseillé d'éviter I'utilisation des
_ variables globales.
Prototype :

b) Pour des raisons de lisibilité, nous proposon
de faire précéder par p_ le nom des
parametres formels en sortie ou en entrég

Type nom_fonction (Te nom_formel_entree,
Tes* p_nom_formel_es)

Te = type du paramétre d'entrée sortie. Ceci permet de voir directement que l¢

parametre formel est un pointeur.

Tes = type du parametre de sortie ou d'entréeesoriti

Littérale : fonction prototype type Nom_fonction (type nom_formel_entree,
typ@*nom_formel_es)

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 22

2S

1)

3- Passage de paramétres
Le passage de paramétres consiste a connecteadesgires effectifs aux paramétres formels et spexctant
I'ordre de remplacement.

Un paramétre formel en entrée peut étre connecté an parametre effectif qui peut étre :
- une constante notée en langage C valeur
- un contenu d'une variable noté en langage®_rariable

Un paramétre formel pointeur peut étre connecté aun parametre effectif qui peut étre :
- I'adresse d'une variable notéeamgdge C &nom_variable ou nom_tableau
ou &nom_structure
- le contenu d'un pointeur (pointant le méme typenoté nom_pointeur

Schéma de principe du passage de parametres
Le schéma consiste a indiquer :
- & l'intérieur du cadre de la fonction :
*le nom de la fonction
* les parametres formels avec leur type associé
* éventuellement les entrées physiques, les soptigsiques et les variables globales (méme si shes
déconseillées)

- a l'extérieur du cadre de la fonction
* les parametres effectifs
* les connexions des entrées physiques, des sphiesques et des variables globales.

Exemple de représentation avec passage de paramedre

Exemple général

valeur |
nom_variablef !
1
1

&nom_variablg !
nom_pointeur Tes* p_nom_formel_es
nom_tableau

&nomtableau[0
nom_pointeur
nom_tableau

, resultat
Te nom_formel_entrée retour(Type}l—»

Tes nom_tabl[]

Tes nom_tab_2d[][n]
Nom_fonction

&nom_tableau[0][0
nom_pointeur
nom_tableau

Prototype :
Il permet de définir I'ordre de passage des paramét

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 23

4- Utilisation d'une fonction

Utiliser une fonction consiste a :
- & placer le composant dans la séquence de teitem

- connecter le composant, c'est-a-dire appel@nietion avec un passage de paramétres.
La connexion des parametres effectifs sur les patras formels se fait en respectant l'ordre deanpatres
formels dans la fonction prototype et en remplagamque paramétre formel par le paramétre effectif
correspondant.

- exploiter éventuellement le résultat fourni @afdnction.

Exemple

Nom_effectif_entree .
- — — % Te nom_formel entrée

&Nom_eﬁectlf_eHs Tes *Pp_nom_formel_es

resultat
Nom_fonction retour(Tr) —»

type_retour Nom_fonction (type nom_formel_entrégtype *ptr_nom_formel_es)

resultat = Nom_fonction (nom_effectif_entrée, &nafiectif es)

5- Codage
Le codage consiste a traduire la description graghen programme en langage C.
La démarche que nous proposons permet d’automdéiseladuction de la connexion graphique ou liteéra
formelle en instructions du langage C a partiradddscription :
- graphique
- littérale formelle

Nom_effectif_entre . .
- - Te : nom_formel entrée

Graphique &Nom_effectif_es b{Tes : (ptr_nom_formel_es)

resultat
Nom_fonction Tr: valeur_retour7L>

Fonction prototype :
type_retour Nom_fonction (type nom_formel_entrgpet*ptr_nom_formel_es)

Littérale formelle . s
Connexion littérale formelle

Resultat = Nom_fonction (nom_effectif entree, &nafiectif es)

Tableau de passage de paramétres par valeur
Le passage de parameétres par valeur se limite yges tsimples parce que si le paramétre formel edypke
composé (tableau ou structure) alors il est paasédresse.

Type Parametre formel Parametre effectif

Constante (valeur)
Nom_effectif

simple Nom_formel_entree

Utilisation des parametres passés par valeur dana fonction

Les paramétres effectifs passés par valeur nepssntnodifiés par la fonction appelée.

Cependant, le parameétre formel est considéré coommeevariable locale dont le contenu peut étre m@dif
localement dans la fonction. Autrement dit, cettedification n'est pas répercutée a I'extérieutadenction.

Le nom de la variable locale est celui du paranfétrael.

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 24

Tableau de passage de paramétres par adresse

Ce tableau récapitule les passages de parametradrpase. Il permet de faire des remplacement§ragtigues

type Paramétre formel

Parameétre effectif

*ptr_nom_formel
simple

&nom_effectif

Nom_pointeur_initialisé

*ptr_nom_formel

Nom_tableau_effectif

&Nom_tableau_effectif[0]

Nom_pointeur initialisé
sur tableau_effectif de méme type

Tableau a une dimension
Nom_formel_tableaul]

composé

Nom_tableau_effectif

Nom_pointeur initialisé
sur tableau_effectif de méme type

Tableau a deux Nom_tableau[][m_max]
dimensions

Nom_tableau_effectif

&Nom_tableau_effectif[0][0]

Nom_pointeur initialisé

Utilisation des parametres passés par adresse daasfonction
1- Ce tableau récapitule les passages de paranpatregiresse. Il montre comment les utiliser &fiaur de la

fonction.

2- Volontairement, nous n‘avons traité que les siagples pour permettre a la majorité des étudiai@s
comprendre ces mécanismes.
3- Lorsqu'on manipule les pointeurs, il est comsallutiliser les parentheéses pour préciser laggode I'opérateur
* car on n'a pas toujours a I'esprit la prioritéretes opérateurs.

type Parametre formel Contenu de la variable Adresse de la variable pointée
pointée
*
simple *ptr_nom_formel ptr_nom_formel ptr_nom_formel
Tableau a | *ptr_nom_formel *(ptr_nom_formel + index) (ptr_noformel + index)
une
dimension | Nom formel_tableau[] | Nom_formel_tableau[index] &Nom_formel_tableau[inflex
Tableaua | Nom_tableau[][[m_max] Nom_tableauli][j] &Nom_tableauli][j]
deux

composé | dimensions

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDG&ulouse 3 25

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDG&ulouse 3

26

Exemple de traduction d'un organigramme en langag€

A\ 4 dci
t1-»{ uc *: ptr_yr0 (k- , :
mo HE = P B affiche(motl, nb_tentatives);
nb_tentatives®| uc: nb affiche
v
. . Retour(uc) p»caractere caractere = lecture_clavier();
- lecture_clavier
v
t1-—» *: pt 0 ltat . .
mo Hen pr Retour(ucp» >4 resultat = essais(motl, &refl[0], caractere, & telntatives)
&refl[0] =¥ uc *: ptr_xrl
caractere® uc : xcar if (resu|tat ::0)
&nb_tentatives @ uc* : ptr_xr2 essaig| { sortie =0;
}
@ o else
< enuna>o {
if (resultat == 1)
sortie — 0| | ptr_zr0 msg_bravo| | ptr_zr0 — msg_perdu { ptr_zr0 = msg_bravo;
! }
v else
"resultat = %s" —»| uc* : "message + balises" { ptr_zrO = msg_perdu;
ptr_zrO —»| variables printf }
printf("resultat= %s", ptr_zr0);
@ sortie = 1,
}
}
while (!(sortie==1));
CHAP5_ Langage C 2020 2021 vl.doc A.Nketsa IDGaulouse 3 27

Présentation d'une fonction en organigramme

—» Te vl

<+» Tes *p_v2

Nom_fonction Retour(Typej—»

variables locales

Organigramme de la fonction

v

Vue extene de la fonction

—» Te vl Retour(Type) —»
<“» Tes *p_v2
Nom_fonction
Exemple
: void gestion_couleur(
Gestion_codeur . d char *
uc*p_yetat_mae uns!gne char p_yetat_mae,_
Variables locales unsigned char *p_ymem_sortie)
uc mem_entree; {
—»| UucC: *p_ymem_sortie

&mem_entred

*p_yetat_mae—»,
mem_entree—»{UC : Xmem_entree
p_ymem_sortie<{uc : *p_xmem_sortie

mem_entree —»|
p_yetat_mae®¥,

*p_ymem_sortie®,

v

lecture_des_entrées
UcC *p_xmem_entree

-

v

uc : xetat_mae calcul_action_transition

v

uc : Xxmem_entree

Evolution_mae

uc : *p_xeta_mae

v

calcul_action_etat

v

uc: xmem_sortie

Actualisation_des_sorties

unsigned char mem_entree,;

lecture_des_entrees(&mem_entree);

calcul_action_transition(
*p_yetat_mae, mem_entree,

p_ymem_sortie);

Evolution_mae(mem_entree,
p_yetat_mae);

calcul_action_etat();

Actualisation_des_sorties(*p_tmem_sortie);

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDG&ulouse 3 28

Langage C (partie 3)

Fonctions d'entrées-sorties standard en langage C

Représentation sous forme de composants logiciels

Fonctions de sortie standard
La sortie standard du langage C est un écran queaqpellerons terminal
On peut répartir les fonctions de sortie standar@ groupes de base :

Affichage :
- d'un caractere

- d'une chaine de caractéres
- formaté : on peut choisir la facon d'affichertttype d'information.

caractéere o
putchar
Chaine de caractéres, | .
> Terminal

puts

Affichage formatée >
printf

Notation de type pour les composants

¢ =char uc = unsigned char
i =int ui =unsigned int
f = float
Fonctions Exemples
Affichage d'un caractére a) Afficher le caractére A sur I'écran

—» c code_ascii

putchar

Prototype :

retour(c)

char putchar(char code_ascii)

putchar('A");

b) Afficher le caractére donc le code ascii estsdan
variable, car, de type char
putchar(car);

Affichage d'une chaine de caractéres

—» c* ptr_chaine
retour(int)
puts

>

Prototype :

int puts(char* ptr_chaine)

a) Afficher la chaine de caractéres "TEST" swrdé
puts("TEST");

b) Afficher la chaine de caracteres stockée dawmaiiable,
tab_car, de type tableau de char
puts(tab_car);

Remarque importante:

Sinon la fonction affichera des caractéres erronés.

On doit s'assurer que la chaine, tab_car, se tempan0x00.

CHAP5_Langage C 2020 _2021 vl.doc A.Nketsa IDG&ulouse 3

29

Affichage formaté

c* texte_et_balises
retour(int) >
printf

v v

parametres

Prototype :
int printf ("texte_et_balises", parameétres)

Remarques :
1- Texte est une chaine constante de caracteres.

2- "parameétres” est la liste des variables a liseraséparées par des virgules.

3- Une balise est une indication de la fagon d'préger l'information binaire a afficher. Il estta®o suivi
d'un caractére d'interprétation

%c = interprété comme un caractére

%s = interprété comme une chaine de caractéres

%u = interprété comme un entier non signé

%d = interprété comme un entier signé

%x = interprété comme un entier non signé &talisé en hexadécimal

%f = interprété comme un nombre en flottastiglisé sous la forme xxx.yyy

Pour les balises %u, %d, %x on peut préciseotetme de digits a afficher.

a) les digits manquants sont remplacés par desespsi le nombre compte moins de digits a afficher
syntaxe: %nu %nd %nX ou %nx

b) les digits manquants sont remplacés par dadédnsmbre compte moins de digits a afficher.
syntaxe: %0nu %O0nd %O0nX ou %0nx

c) %f
syntaxe : %n.mf n digits pour la pagigiere
m digits pour la partie fractionnaire

4- La balise doit étre compatible avec le typefdfimation & afficher. On peut cependant utiliser la
conversion explicite (Cast) pour forcer la compété Par exemple afficher un unsigned char agec |
balise %u peut produire un résultat curieux entionadu compilateur. Certains compilateurs assuren
des conversions implicites correctes et d'autresipa effet, %u est associé aux entiers donc pwoef
la compatibilité, il suffit de faire un cast deMariable en écrivant (unsigned int) nom_variable.

5- Certains compilateurs ne supportent pas trgpademetres dans une seule fonction printf. Il esseillé
de le faire en plusieurs printf.

6- Quelques caractéres spéciaux utiles :
\n aller a la ligne suivante
\r aller au début de la ligne en cours
\0x00 fin de la chaine de caracteres

Exemples

CHAP5_Langage C 2020 2021 vl.doc A.Nketsa IDG&ulouse 3 30

Exemples printf(suite)

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDG&ulouse 3

31

Fonctions d'entrée standard
L'entrée standard du langage C est un clavier.

On peut répartir les fonctions d'entrée standar8 groupes .

Lecture :
- d'un caractére
- d'une chaine de caractéres
- formatée :

caractere

/ getchar - _getkey
Chaine de caractéres:

gets
lecture formatée

»

Clavier /
/

scanf

Microcontrbleur

Fonctions

Exemples

Lecture d'un caractére tapé au clavier sans écho
(sans affichage sur I'écran du symbole du caractg
tapé).

La fonction est bloguante.C'est-a-dire qu'elle
attend jusqu'a ce qu'un caractéere soit tapé.

retour(c)»
_getkey

Prototype :
char _getkey(void)

2re

Lecture d'un caractére tapé au clavier avec écho
(avec affichage sur I'écran du symbole du caracts
tapé)

La fonction est bloquante.C'est-a-dire qu'elle
attend jusqu'a ce qu'un caractére soit tapé.

retour(c)>
getchar

Prototype :
char getchar(void)

Indication de caractére disponible provenant du
clavier

La fonction est non bloquante C'est-a-dire qu'elle
n'attend pas qu'un caractere soit tapé.

retour(bit) (>
kbhit

Prototype :
bit kbhit(void)

CHAP5_Langage C 2020 _2021 vl.doc

A.Nketsa IDG&ulouse 3

32

Lecture d'une chaine de caracteres tapés au
clavier

< c* ptr_chaine

—» Ui
ui xnb_car retour(* char)

gets

Prototype :
char* gets(char* ptr_chaine,
unsigned int xnb_car)

On doit indiquer :
- la chaine de caracteres ou les codes ascii des
caractéres tapés doivent étre stockés

- le nombre de caracteres acceptés

La fin de saisie de la chaine intervient si on tape
Enter , Espace

Si on tape :

- moins de caracteres que prévus, la fonction
retourne une chaine de caractéres avec inse
automatique de \0x00 (fin de la chaine)

- plus de caracteres que prévus, la fonction
tronque a xnb_car -1 et chaine de caractéeres
avec insertion automatique de \0x00 (fin de |g
chaine)

Il est donc de votre responsabilité de prévoir
suffisamment de places par rapport au nombre
xnb_car.

tion

Lecture des informations formatées

c* balises

* parametretour(int) >

scanf

Prototype :
int scanf ("balises", paramétres)

Cette fonction fonctionne assez mal pour le
formatage des informations. La moindre erreur d
saisie crée des décalages de gestion du buffer
d'entrée. Par ailleurs, comme la longueur de la
chaine n'est pas précisée, on risque des
débordements mémoires.

1%

Pour lire les informations formatées, nous
conseillons d'utiliser la fonction gets et les fimies
de conversions comme :

atoi convertir une chaine de caracteres en un
entier signé ou non

atof convertir une chaine de caracteres etoai

CHAP5_Langage C 2020 2021 vl.doc

A.Nketsa IDG&louse 3

33

