
 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 1

Polycopiés

Cours Informatique embarquée

GEII Toulouse 2020 - 2021

A. Nketsa

CHAP 5 Langage C (Rappel partie 1)

Langage C (Rappel partie 1)
 - Variables
 - Le pointeur
 - Opérateurs

- Instructions

 Langage C (Rappel partie 2)

- Fonctions
- Notion de composant logiciel
- Organigramme structuré basé composants

Exemple de traduction d'organigrammes en langage C

Langage C (partie 3)

- Fonctions d'entrées-sorties standard en langage C
- Représentation sous forme de composants logiciels

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 2

CHAP 5 Langage C
I- (Partie 1 Rappel)

Remarques importantes
I-En S1, vous avez programmé en langage C dans un environnement de

développement en C++.
Cela ne veut pas dire que vous savez programmer en C++, parce que en C++ on peut manipuler les objets et les
classes que vous n'avez pas vus.

II-En S2, nous allons travailler en langage C pour l'informatique embarquée dans un
environnement en C.

III- Conclusion
En S2, nous allons utiliser pratiquement les mêmes instructions vues en programmation

qu'en S1

3 points vont un peu changer :

a) Les instructions d'entrées sorties standard
 En C++

C’est le compilateur
qui fait presque tout
pour vous pour
afficher

En C standard
C’est vous qui devez dire au compilateur
ce que vous souhaitez afficher

Entrée standard Cin

Lecture d'un caractère
getkey(void)
getchar(void)

Lecture d'une chaîne de caractères
gets(char *p_ch, ui nb_car)

Sortie standard Cout Ecriture d'un caractère
putchar(char code_ascii)

Ecriture d'une chaîne de caractères
puts(char *p_ch)

Ecriture formatée
printf("msg + balises", parameters)

b) Les pointeurs
Vous les avez vus en fin de S1.
Comme c'est un point très important en langage C, nous y reviendrons

c) Le passage des paramètres d'entrées-sorties des fonctions
En S1, vous avez vu le passage des paramètres d'entrées-sorties des fonctions par référence. C'est-à-
dire, pour simplifier, que c'est le compilateur qui fait la correspondance entre les paramètres formels
et ceux effectifs.

En langage C dans un environnement de développement en langage C, c'est le programmeur qui est
reponsable de ce passafe de paramètres.

Nous allons y consacrer un chapitre

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 3

5-1 Langage C

1- Les Variables (Type – Taille – Occupation mémoire - Déclaration)

Définition
Une variable est un ensemble de cases mémoire (généralement) consécutives.
A cet ensemble de cases, on associe :

- un nom
- une adresse (c'est l'adresse de la première case de l'ensemble)
- un contenu

Donc déclarer une variable c'est :
- Donner un nom

- Indiquer la taille de la variable et l'interprétation

- Associer l'adresse de la variable à son nom

Obtention du contenu d'une variable
Pour obtenir le contenu d'une variable,

il suffit d'indiquer le nom de la variable

Obtention de l’adresse d'une variable
Pour obtenir l'adresse d'une variable,

il suffit d'utiliser l'opérateur &

Exemple : &nom_variable donne l'adresse de la variable appelée nom_variable

Taille des variables sur microcontrôleur courant
Nom du type commentaire taille intervalle
char Nombre signé 8bits

(1octet =
case mémoire)

-128 à +127

unsigned char Nombre non signé 8bits 0 à 255

int Nombre signé 16bits -32768 à +32767

unsigned int Nombre non signé 16bits 0 à 65535

long Nombre signé 32bits -2147483648 à -+2147483647

unsigned long 32bits 0 à 4294967295 =(232 -1)

float 32bits ≈≈≈≈ -10-38 à +1038

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 4

2- Variables de types scalaires (simples)

1- Déclaration :
Syntaxe générale : type nom_variable = valeur_initiale (optionnelle);

2- Organisation mémoire des variables et stockage

Base de stockage = octet

Pour une lecture simple, la notation en hexadécimale des valeurs est conseillée

Exemple

le mot de 16bits 0x5421 => poids fort = 0x54 poids faible = 0x21

Stockage de mots de plus de 8bits(octet) dans la mémoire :
a) Mode little endian : poids faible puis poids fort dans l’ordre croissant des adresses

adresse Type Taille Nom variable contenu application

+0 Nom_variable Poids faible

+1

int ou

unsigned int
2

 Poids fort

Exemple

unsigned int mot_16bits = 0x5421;

adresse Type Taille contenu contenu application

+0 mot_16bits Poids faible 0x21

+1

int ou

unsigned int
2

 Poids fort 0x54

Stockage de mot de 16bits : little Endian
 Exemple mot = 0x55AA

nom_variable

octet_poids fort

adresse

+0

+1

octet_poids faible
Mot

unsigned int mot =0x55AA

Nom variable adresse contenu
mot 0x51 0xAA
 0x52 0x55

Stockage de mot de 32bits : little Endian
 Exemple mot_32bits=0x00FF55AA

nom_variable
octet_poids fort

adresse

+0

+1

octet_poids faible

+2

+3octet_poids fort

octet_poids faible

Mot poids faible

Mot poids fort

float reel = 0x00FF55AA
Nom
variable

adresse contenu

reel 0x100 0xAA
 0x101 0x55

Mot
poids faible

 0x102 0xFF
 0x103 0x00

Mot
poids fort

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 5

b) Mode big endian : poids fort puis poids faible dans l’ordre croissant des adresses

adresse Type Taille Nom variable contenu application

+0 Nom_variable Poids faible

+1

int ou

unsigned int
2

 Poids fort

Exemple

unsigned int mot_16bits = 0x5421;

adresse Type Taille contenu contenu application

+0 mot_16bits Poids fort 0x54

+1

int ou

unsigned int
2

 Poids faible 0x21

Exemples de déclaration des variables simples (scalaires)
char caractere, octet_sg; // taille 1 octet valeur entre -128 et +127

unsigned char octet_ns; // taille 1 octet valeur entre 0 et 255

int mot_sg_16bits // taille 16bits = 2 octets
// valeur entre -32768 et +32767

unsigned int mot_ns_16bits // taille 16bits = 2 octets

// valeur entre 0 et +65537

float nb_reel; // taille 32bits = 4 octets = 2 mots de 16bits
 // Valeur ≈≈≈≈ -10-38 à +10+38

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 6

3- Variables de type structuré

1- Définition et types structurés
Une variable de type structuré est une variable qui regroupe sous une appelation plusieurs variables :

- de même type, c'est un tableau
- de types différents, c'est une structure

Nous ne traiterons que de la variable structurée de type tableau

2- Tableau à une dimension
 Déclaration:

Sans valeur initiale :
type nom_tableau[nombre_eléments];

Avec valeur initilae :
type nom_tableau[nombre_eléments] =(optionnelle) {valeur initiales, };

Exemple
Sans valeur initiale
unsigned char tab_uc[3];

Organisation du tableau
tab_uc tab_uc[0]
 tab_uc[1]
 tab_uc[2]

Avec valeur initiale
unsigned char tab_uc[3] = {0x20, 0x41, 0x45};

Organisation du tableau
tab_uc 0x20 tab_uc[0]
 0x41 tab_uc[1]
 0x45 tab_uc[2]

3- Tableau à deux dimensions
Déclaration :

Sans valeur initiale :
type nom_tableau[nombre_ligne][nombre_colonne];

Avec valeur initiale :
type nom_tableau[nombre_ligne][nombre_colonne] ={ {valeur initiales}, };

Exemple
Sans valeur initiale
unsigned int tab_ui[2][2];

Organisation du tableau
tab_ui[0][0] tab_ui[0]
tab_ui[0][1]

Ligne 0

tab_ui[0][0]

tab_ui

tab_ui[1]
tab_ui[0][1]

Ligne 1

Avec valeur initiale
int tabi[3][2] = {{25, -30},{46,00},{100,1}}
 colonne0 colonne1
ligne0 tabi[0][0] tabi[0][1]
ligne1 tabi[1][0] tabi[1][1]
ligne2 tabi[2][0] tabi[2][1]

Organisation tableau
tabi[0][0] 25 tabi[0]
tabi[0][1] -30

Ligne0

tabi[1][0] 46 tabi[1]
tabi[1][1] 00

Ligne1

tabi[2][0] 100

tabi

tabi[2]
tabi[2][1] 1

Ligne2

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 7

3- Accès aux éléments d'un tableau à une dimension

Désignation de tout le tableau:
 nom du tableau

Désignation d'une case du tableau :
 nom_tableau[indice] avec 0 ≤ indice < nombre d'éléments du tableau

4- Accès aux éléments d'un tableau à deux dimensions
Désignation de tout le tableau:
 nom du tableau

Désignation d'une case du tableau :
 nom_tableau[ligne][colonne] avec 0 ≤ ligne < nombre de lignes du tableau
 avec 0 ≤ colonne < nombre de colonnes du tableau

Désignation d'une ligne su tableau:
 nom_tableau[ligne] avec 0 ≤ ligne < nombre de lignes du tableau

Remarque importante :

- Le nom du tableau représente l'adresse du tableau
- L'adresse du tableau est l'adresse de la première case du tableau

 - pour un tableau à 1 dimension
nom_tableau ≡ &nom_tableau[0]

 - pour un tableau à 2 dimensions
nom_tableau ≡ &nom_tableau[0][0]

 ≡ nom_tableau[0] pour la première ligne

Cas particuliers des chaînes de caractères
Définition :
Une chaîne de caractères est un tableau à 1 dimension qui :

- contient des codes ascii,
- et se termine par le séparateur 0x00

Notation

- le code ascii d'un symbole est noté entre apostrophes : 'symbole'
Exemple 'A' codes ascii de A

- une chaîne de caractères est notée entre guillemets : "suite de symboles"
 Exemple : "ABCD"

 char chaine[6] = "ABCD";

chaine chaine[0] chaine[1] chaine[2] chaine[3] chaine[4] chaine[5]
 'A' 'B' 'C' 'D' 0x00 Non défini
 Fin de la

chaine

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 8

1-3 Type pointeur
a) Définition
Un pointeur est une variable qui contient l'adresse d'une autre variable.

Autrement dit : un pointeur contient une valeur qui ne peut être interprétée que comme une adresse.

Plus simplement, on dit qu'un pointeur contient l'adresse d'une autre variable que l'on appelle variable
pointée.

b) Déclaration d'un pointeur
 Sans valeur initiale :

type* nom_pointeur; // notée plus couramment type *nom_pointeur;

 Avec valeur initiale :
type* nom_pointeur=adresse;

c) Compréhension
 1) le pointeur pointe sur une variable de même type que celui de la déclaration de la variable.

2) nom_pointeur est la variable pointeur qui contient l'adresse de la variable pointée
 3) *nom_pointeur est le contenu de la variable pointée

4) nous conseillons de noter le pointeur sous la forme p_nom pour le différencier des variables
standard

5) Exemple :
unsigned char octet = 0x50;
unsigned char *p_octet;

Schéma
Nom_variable adresse contenu interprétation
octet 0x100 0x50
 0x101 78
 0x102 0x54

Valeurs des
variables

p_octet 0x103
 0x104

0x100 Adresse de la
variable
pointée

5-1) Schéma

p_octet

octet

Adresse p_octet = 0x103

Contenu p_octet
= 0x100

Adresse de octet
Adresse octet = 0x100

Contenu octet
= 0x50char*

charoctet = (*p_octet)

5-2) le contenu de p_octet est 0x100 = adresse variable pointée

5-3) le contenu de *p_octet est le contenu de la variable qui se trouve à l'adresse 0x100 donc le
contenu de la variable octet

5-4) Conclusion (*p_octet) = 0x50

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 9

d) Règles de mainpulation des pointeurs
- on peut ajouter une valeur entière à un pointeur ⇒ nom_pointeur + valeur_entière
- on peut soustraire une valeu entière d'un pointeur ⇒ nom_pointeur - valeur_entière

Valeur_entière peut être :
 - une constante entière
 - une variable de type char, unsigned char, int ou unsigned int

En savoir plus

Pour calculer l'adresse pointée par ces deux opérations, il faut tenir compte de taille du type pointé.
 adresse pointée = (nom_pointeur) ±±±± (taille_type_pointeur * valeur_entière)

Conseil d'utilisation des pointeurs
Nous conseillons d'utiliser les parenthèses (*nom_pointeur) pour éviter des ambiguïtés d'interprétation
dues à la priorité entre opérateurs.

Relations Pointeur – Tableau
Rappel : nous avons déjà dit que le nom du tableau est l'adresse du tableau

On peut donc considérer que le nom d'un tableau est un pointeur qui contient l'adresse fixe du
tableau.

Considérons la déclaration

unsigned int tab_ui[5];
unsigned int *p_uint;

on peut écrire :
p_uint = tab_ui; // p_uint reçoit l'adresse de tab_ui
p_uint = &tab_ui[indice]; // p_uint reçoit l'adresse de tab_ui[indice]

Considérons :

p_uint = tab_ui; // p_uint reçoit l'adresse de tab_ui

Les écritures suivantes sont indentiques

tab_ui[indice] ≡ *(p_uint + indice) // la parenthèse est obligatoire pour éviter l'ambigüité

tab_ui[2] ≡ p_uint[2] // sans *

p_uint[2] ≡ *(p_uint + 2)

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 10

2- Les opérateurs

a) Arithmétiques de base (+, -, *, /)

Opérateur Interprétation Syntaxe commentaires
+ (binaire) addition x + y
- (binaire) soustraction x - y
* (binaire) Multiplication x * y
/ (binaire) Division entière x / y Quotient de x / y
% (binaire) modulo x % y Reste de la division entière x / y
+ (unaire) Signe positif + x
- (unaire) Signe négatif - x
+ (unaire) après x++
+ (unaire)

Incrémentation
avant ++x

- (unaire) après x--
- (unaire)

Décrémentation
avant --x

Hiérachie des opérateurs
Régle simple : utilisation des parenthèses pour expliciter le calcul

b) Affectation
Opérateur Interprétation Syntaxe commentaires
= Affectation simple x = y;
 x = formule
(opérateur) = Affectation composée x operateur = y; x = x opérateur y;

c) Opérateurs mathématiques
Les opérateurs mathématiques sont des fonctions dont on récupère les résultats.

Exemples de fonctions
librairies fonction interprétation
#include <math.h> float pow (float x, float y); Resultat = xy
 float sin (float x); Résultat = sin (x)

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 11

d) Opérateurs logiques
Définition
Un opérateur logique permet d'effectuer une opération logique entre les bits de même rang dans les
opérandes sans report.

Exemple :

a4a5a6a7 a3 a0a1a2

b4b5b6b7 b3 b0b1b2

op

a0
op
b0

a7
op
b7

Va

Vb

Va op Vb
a6
op
b6

a5
op
b5

a4
op
b4

a3
op
b3

a1
op
b1

a2
op
b2

Opérateurs logiques de base
Opérateur Interprétation Syntaxe commentaires
~(unaire) Pas ~X
&(binaire) ET X & Y
| (binaire) OU X | Y
^ (binaire) OU exclusif X ^Y

Opérateurs logiques de décalage
>> (binaire) Décalage à droite X >> a Décalage à droite de a position

Exemple

a4a5a6a7 a3 a0a1a2Va

Va >> 1

<< (binaire) Décalage à gauche Y << b Décalage à gauche de b position
Exemple

b4b5b6b7 b3 b0b1b2Vb

Vb << 1

b4b5b6 0b3 b0b1b2 0

a4a5a6a7 a30 a1a20

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 12

Utilisation des opérateurs logiques en informatique industrielle et/ou
embarquée

Principe
Définir le masque d'isolement des bits concernés
 ⇒⇒⇒⇒ mettre 1 dans la position des bits concernés et 0 pour tous les autres bits
Nous l'appellerons masque en ET que nous noterons masque_ET

Exemple considérons une variable de 8bits, définir le masque en ET pour les bits 7, 4 et 0
masque_et = 0b10010001 = 0x91

Nous pouvons aussi définir un masque en OU que nous noterons masque_OU pour lequel on met 0
dans la position des bits concernés et les autres à 1.

a) Mise à 1 d'un ou plusieurs bits d'un mot
 Effectuer un OU logique entre le mot et le masque d'isolement

 Principe :
 - définir le masque en ET
 - faire OU logique entre le mot et le masque en ET

Exemple
 mettre à 1 les bits 5, 3 et 1 de la variable va
 - masque_ET = 0b00101010 = 0x2A
 - effectuer le OU Va | masque_ET

a4a5a6a7 a3 a0a1a2

0100 1 010

OU

a0a7

Va

Masque_ET

Resultat a6 1 a4 1 1a2

b) Mise à 0 d'un ou plusieurs bits d'un mot
 Effectuer un ET logique entre le mot et le complément du masque en ET

 Principe :
 - définir le masque en ET
 - faire ET logique entre le mot et le complément du masque en ET

Exemple
 mettre à 1 les bits 7, 6 et 0 de la variable va
 - masque_ET = 0b11000001 = 0xC1
 - ~masque_ET = 0b00111110 = 0x3E
 - effectuer le ET Va & ~masque_ET

a4a5a6a7 a3 a0a1a2

1100 1 011

ET

00

Va

~Masque_ET

Resultat 0 a5 a4 a3 a1a2

c) Complémentation d'un ou plusieurs bits d'un mot
 Effectuer un OU EXCL logique entre le mot et le masque en ET

 S = A⊕ B = B A BA + donc B = 0 ⇒ S = A

 B = 1 ⇒ S = A

 Principe :
 - définir le masque en ET
 - faire OU_exclusif logique entre le mot et le masque en ET

Exemple
 Complémenter à 1 les bits 7, 6 et 0 de la variable va
 - masque_ET = 0b11000001 = 0xC1
 - effectuer le ET Va ^ masque_ET

a4a5a6a7 a3 a0a1a2

0011 0 100

OU EXCL
Va

Masque_ET

Resultat 1 a4 1 1a2a7a7 a6a6 a0a0

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 13

e) Opérateurs Booléens
Définition
Les opérateurs booléens sont les opérateurs pour lesquels, le résultat produit est un booléen.

Remarque :
Un booléen est une valeur vrai ou faux

Pour une présentation simple, nous allons répartir les opérateurs booléen en deux groupes

- Opérateurs booléens simples

- Opérateurs booléens composés

Opérateurs Booléens simples
Opérateurs de comparaison
Un opérateur de comparaison permet d'effectuer une opération de soustraction suivie d'une prise de décision
booléenne (Vrai – Faux). On dit aussi qu'il produit un résultat booléen.
Opérateur Interprétation Syntaxe commentaires
== égalité
!= différent
< Inférieur (plus petit)
<= Inférieur ou égal
> supérieur (plus grand)
>= supérieur ou égal
Exemple

Opérateurs Booléens composés
Opérateurs booléens pour la combinaison
Un opérateur booléen permet d'effectuer des fonctions logiques entre booléen pour obtenir un résultat booléen.

Opérateur Interprétation Syntaxe commentaires
!(unaire) Pas (NON)
&&(binaire) ET booléen
|| (binaire) OU booléen

Exemple
On considère la variable unsigned int mot1, on veut tester
a) si les bits pairs sont tous à 0

b) si les bits 15, 13, 10, 8, 4 et 2 sont respectivement à 0, 1, 0, 0 ,1 et 1

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 14

Opérateurs d'accès à la mémoire

opérateur interprétation syntaxe commentaire
& Obtention de l’adresse de &nom_variable Fournit l’adresse de nom_variable
* Indirection (contenu du contenu) *ptr ptr pointe sur une variable

ptr contient l’adresse de la variable
(*ptr) contient la donnée

Autres opérateurs

opérateur interprétation syntaxe commentaire
(type) Cast forçage de l’interprétation (int) var_char Interpréte var_char comme un entier signé

(int)
siezof Taille d’une variable en nombre

de bits
Sizeof(var_int) Nombre de bits de la variable var_int

?: : Evaluation conditionnelle v ?:z : t Si v ≠ 0
 alors y
 sinon t

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 15

Instructions

Fonctions

Notion de composant logiciel

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 16

1- Affectation
L'instruction d'affection consiste à transférer une information ou le résultat d'une expression dans une
variable.
dest = source; ou dest = expression;

Expression est une formule utilisant différents opérateurs
Une instruction d'affectation peut donner lieu à des conversions implicites

2- Conversions implicites
Une conversion implicite de type est une conversion effectuée automatiquement par le compilateur soit
pendant les calculs soit lors de l’affectation.

Règles de conversions implicites

- Sans perte d'information
Des types les moins précis vers les plus précis
Char →→→→ int →→→→ long →→→→ float

Exemple
Considérons les déclarations
char car;
int v_int;
float reel;

on peut écrire sans perte de precision :
v_int = car; // poids fort de v_int = 0x00 et poids faible de v_int = car
reel = car; // la partie entière de reel = car
reel = v_int; // la partie entière de reel = v_int

- Avec perte possible d'information

Des types les plus précis vers les moins précis
float →→→→ long →→→→ int →→→→ char

Exemple
Considérons les déclarations
char car;
int v_int;
float reel;

on peut écrire sans perte de precision :
car = V_int; //car = poids faible de v_int donc le poids fort est perdu
car = reel; // la partie fractionnaire perdue et |reel| doit être < 256
v_int = reel; // la partie fractionnaire perdue et |reel| doit être < 65536

- pour les arguments d'une fonction, les conversions implicites sont automatiques

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 17

3- Conversions explicites (cast)

Objectif :
Une conversion explicite a pour objectif de forcer le type d’une variable pour une untilisation donnée.

Syntaxe
(type souhaitée) nom_variable

Exemple

Considérons les déclarations
char car;
int v_int;
float reel;

on peut écrire sans perte de precision :
(int) car // considérer car comme un int au lieu de un char
(int) reel // considérer reel comme un int au lieu de un float
(float) v_int // considérer v_int comme un float au lieu de un int

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 18

4- Instructions de structure de contrôle
Remarque importante :
Dans les instructions de contrôle, condition est expression booléenne.

a) Choix simple (Bloc_si)

condition

actions_alorsactions_sinon

Bloc_si

Traduction en C

if (condition)
 {
 actions_alors
 }
else
 {

actions_sinon
 }

condition

actions_alors

Bloc_si

Traduction en C

if (condition)
 {
 actions_alors
 }

b) Choix multiple

choix=choix1
actions_choix1

Bloc_cas

actions_par_defaut

actions_choixn
choix=choixn

switch (choix)
 { case choix1 : action_choix1
 break ;
 case choix1 : action_choix1
 break ;
 case choix2 : action_choix2
 break ;

 case choixn : action_choixn
 break ;
 default : action_defaut
}

Autre représentation

Bloc cas

choix

choix1

action_choix1

choixn

action_choixn

autre

action_autre

c) Boucles

c-1 Repeter
Repeter jusqu'à condition Repeter tantque condition

actions_repeter

Bloc_repéter1

condition

do
 {
 action_repeter
 }
while (!(condition)) ;

Bloc_repéter2

condition

actions_repeter

do
 {
 action_repeter
 }
while ((condition)) ;

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 19

c-2 Tant que et Pour
Tant que

actions_tantque

Bloc_tantque

condition

while (condition) ;
 {
 action_tant_que
 }

Pour

condition_pour

actions_pour

Bloc_pour

initialisation

Actions_finpour

Remarque :
La structure de contrôle pour est un cas particulier de celle de tant
que.

for (initialisation; condition_pour; actions_fin_pour)
 {
 Actions_pour
 }

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 20

5- Les Fonctions en langage C
a- Définition
Une fonction est une séquence d’instructions que l’on peut appeler autant de fois que l’on veut pour son
exécution.
La fonction est identifiée par un nom

Pour lui permettre d’effectuer différents traitements, on lui associe des paramètres :
- dit formels à la construction
- dit effectifs à l’utilisation.

La fonction peut retourner ou pas une valeur.

Une fonction est une entité qui peut être autonome.
C'est un élément important de la structuration d'un programme.

b- Paramètres et Notion d'entrée, de sortie et d'entrée-sortie
Les paramètres d’une fonction peuvent être classés en 3 groupes que nous ramènerons à groupes

- Groupe 1 : le paramètre n’est pas modifié pour le programme qui appelle la fonction. On dit que
c’est une entrée.

- Groupe 2 : le paramètre est modifié pour le programme qui appelle la fonction. On dit que c’est
une sortie.

- Groupe 3 : le paramètre est utilisé dans la fonction comme une entrée et peut être modifié pour le
programme qui appelle la fonction. On dit que c’est une entrée-sortie.

Remarque :

- la sortie et l’entrée-sortie peuvent être regroupées.
- Ce paramètre doit utiliser le pointeur pour indiquer l’adresse de la variable que le programme

appelant veut faire modifier.

c- Notion de paramètres formels
Un paramètre formel est une variable qui apparaît dans l’entête de la fonction.
Cette variable peut être utilisée dans la fonction comme toute autre variable.
Si le paramètre est de type entrée alors la variable associée est une variable locale

Déclaration d’un paramètre formel d’entrée
Type nom_paramètre_entree

Déclaration d’un paramètre formel d’entrée-sortie ou de sortie
Type* nom_paramètre_entree_sortie

d- Variable locale
Une variable locale est une variable déclarée dans la fonction. Elle n’est vue que dans la fonction même si
elle a le même nom qu’une variable globale.

Nous conseillons cependant pour des raisons de lisibilité de ne pas donner le même nom à des variables
locales et globales.

e- Variables globales
Une variable globale est une variable déclarée en dehors des fonctions et du main. Elle peut être vue par
toutes les fonctions et le main si elle est déclarée avant les fonctions

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 21

f- Structure d'une fonction

Définition d'une fonction (création d'une fonction)
La définition d'une fonction correspond à la création de la fonction.

fonction sans un retour

void nom_fonction (déclaration des paramètres formels)

{ // déclaration des variables locales

// corps de la fonction
}

fonction avec un retour

type_retour nom_fonction (déclaration des paramètres formels)

{ // déclaration des variables locales

// corps de la fonction
 return(valeur);

}
Dans ce cas, on doit trouver return dans la fonction.
Nous conseillons de n'avoir qu'un seul return

g) Utilisation d'une fonction

1) Définition
L’utilisation de la fonction consiste à appeler la fonction en remplaçant les paramètres formels par les paramètres
effectifs.

2) Notion de paramètres effectifs
Un paramètre effectif est la variable ou la constante qui remplace le paramètre formel.

3) Passage de paramètres
Le remplacement du paramètre formel par celui le paramètre effectif est appelé passage de paramètres
Ce passage doit respecter certaines règles :

- l'ordre des paramètres
- le type des paramètres formels et effectifs

4) Syntaxe d'utilisation
Deux cas :

Pas de retour, l'appel sera
 nom_fonction_sans_retour(passage de paramètres);

Avec un retour
 resultat = nom_fonction_avec_retour(passage de paramètres);

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 22

6- Composant logiciel en langage C
1- Définition
Un composant en langage C est une fonction avec valeur de retour ou pas.
Il comporte deux parties :

- la vue externe appelée aussi interface, ce sont les entrées-sorties du composant. En d'autres termes, ce sont
les paramètres formels de la fonction et la valeur de retour éventuelle.

- la vue interne, c'est le comportement de la fonction. En d'autres termes, c'est la suite d'instructions qui décrit
ce que fait la fonction.

2- Représentation
Nous allons représenter les fonctions comme des composants avec une vue externe que nous allons utiliser dans
les organigrammes

a) Représentation graphique
Dans cette représentation,

� chaque paramètre formel possède un nom formel associé à un type.
c pour char, uc pour unsigned char i pour int, ui pour unsigned int
f pour float d pour double l pour long et ul pour unsigned long

� chaque paramètre formel possède une flèche pour indiquer le sens du paramètre

Paramètre formel
entrée sortie Entrée-sortie retour

Remarque:
Le paramètre entrée-sortie de type pointeur s'écrit comme un paramètre de sortie seule de type pointeur ou type
tableau.

Schéma général de la représentation

Te nom_formel_entrée

Tes* p_nom_formel_es

Nom_fonction

retour(Type)

Prototype :
Type nom_fonction (Te nom_formel_entree,

Tes* p_nom_formel_es)

Te = type du paramètre d'entrée

Tes = type du paramètre de sortie ou d'entrée-sortie

Remarques importantes

a) Nous avons mis à gauche les paramètres
formels en entrée, en sortie et entrée-sortie
puis à droite le retour de la fonction

a) Il est conseillé d'éviter l'utilisation des
variables globales.

b) Pour des raisons de lisibilité, nous proposons
de faire précéder par p_ le nom des
paramètres formels en sortie ou en entrée-
sortie. Ceci permet de voir directement que le
paramètre formel est un pointeur.

Littérale : fonction prototype

type Nom_fonction (type nom_formel_entree,
 type *p_nom_formel_es)

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 23

3- Passage de paramètres
Le passage de paramètres consiste à connecter des paramètres effectifs aux paramètres formels et en respectant
l’ordre de remplacement.

Un paramètre formel en entrée peut être connecté à un paramètre effectif qui peut être :
- une constante notée en langage C valeur
- un contenu d'une variable noté en langage C nom_variable

Un paramètre formel pointeur peut être connecté à un paramètre effectif qui peut être :
- l’adresse d'une variable notée en langage C &nom_variable ou nom_tableau

 ou &nom_structure
- le contenu d'un pointeur (pointant le même type) noté nom_pointeur

Schéma de principe du passage de paramètres
Le schéma consiste à indiquer :

- à l'intérieur du cadre de la fonction :
* le nom de la fonction
* les paramètres formels avec leur type associé
* éventuellement les entrées physiques, les sorties physiques et les variables globales (même si elles sont

déconseillées)

- à l'extérieur du cadre de la fonction
* les paramètres effectifs
* les connexions des entrées physiques, des sorties physiques et des variables globales.

Exemple de représentation avec passage de paramètres

Exemple général

Te nom_formel_entrée

Tes* p_nom_formel_es

Nom_fonction

retour(Type)

Prototype :
Il permet de définir l'ordre de passage des paramètres

valeur
nom_variable

&nom_variable
nom_pointeur
nom_tableau

Tes nom_tab[]&nomtableau[0]
nom_pointeur
nom_tableau

Tes nom_tab_2d[][n]
&nom_tableau[0][0]
nom_pointeur
nom_tableau

resultat

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 24

4- Utilisation d'une fonction
Utiliser une fonction consiste à :

- à placer le composant dans la séquence de traitement

- connecter le composant, c'est-à-dire appeler la fonction avec un passage de paramètres.
La connexion des paramètres effectifs sur les paramètres formels se fait en respectant l'ordre des paramètres
formels dans la fonction prototype et en remplaçant chaque paramètre formel par le paramètre effectif
correspondant.

- exploiter éventuellement le résultat fourni par la fonction.

Exemple

Te nom_formel entrée

Tes *p_nom_formel_es

Nom_fonction retour(Tr)
resultat

Nom_effectif_entree

&Nom_effectif_es

 type_retour Nom_fonction (type nom_formel_entrée, type *ptr_nom_formel_es)

resultat = Nom_fonction (nom_effectif_entrée, &nom_effectif_es)

5- Codage
Le codage consiste à traduire la description graphique en programme en langage C.
La démarche que nous proposons permet d’automatiser la traduction de la connexion graphique ou littérale
formelle en instructions du langage C à partir de la description :

- graphique
- littérale formelle

Graphique

Te : nom_formel entrée

Tes : (*ptr_nom_formel_es)

Nom_fonction Tr : valeur_retour
resultat

Nom_effectif_entree

&Nom_effectif_es

Littérale formelle

Fonction prototype :
type_retour Nom_fonction (type nom_formel_entrée, type *ptr_nom_formel_es)

Connexion littérale formelle
Resultat = Nom_fonction (nom_effectif_entree, &nom_effectif_es)

Tableau de passage de paramètres par valeur
Le passage de paramètres par valeur se limite aux types simples parce que si le paramètre formel est de type
composé (tableau ou structure) alors il est passé par adresse.

Type Paramètre formel Paramètre effectif
Constante (valeur) simple Nom_formel_entree
Nom_effectif

Utilisation des paramètres passés par valeur dans la fonction
Les paramètres effectifs passés par valeur ne sont pas modifiés par la fonction appelée.
Cependant, le paramètre formel est considéré comme une variable locale dont le contenu peut être modifié
localement dans la fonction. Autrement dit, cette modification n'est pas répercutée à l'extérieur de la fonction.
Le nom de la variable locale est celui du paramètre formel.

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 25

Tableau de passage de paramètres par adresse
Ce tableau récapitule les passages de paramètres par adresse. Il permet de faire des remplacements systématiques
type Paramètre formel Paramètre effectif

&nom_effectif
simple

 *ptr_nom_formel
Nom_pointeur_initialisé
Nom_tableau_effectif
&Nom_tableau_effectif[0]

*ptr_nom_formel

Nom_pointeur initialisé
sur tableau_effectif de même type
Nom_tableau_effectif

Tableau à une dimension
Nom_formel_tableau[]

Nom_pointeur initialisé
sur tableau_effectif de même type
Nom_tableau_effectif
&Nom_tableau_effectif[0][0]

composé

Tableau à deux
dimensions

Nom_tableau[][m_max]

Nom_pointeur initialisé

Utilisation des paramètres passés par adresse dans la fonction
1- Ce tableau récapitule les passages de paramètres par adresse. Il montre comment les utiliser à l'intérieur de la

fonction.
2- Volontairement, nous n'avons traité que les cas simples pour permettre à la majorité des étudiants de

comprendre ces mécanismes.
3- Lorsqu'on manipule les pointeurs, il est conseillé d'utiliser les parenthèses pour préciser la portée de l'opérateur

* car on n'a pas toujours à l'esprit la priorité entre les opérateurs.

type Paramètre formel Contenu de la variable

pointée
Adresse de la variable pointée

*ptr_nom_formel ptr_nom_formel simple *ptr_nom_formel

*ptr_nom_formel *(ptr_nom_formel + index) (ptr_nom_formel + index)

Nom_formel_tableau[] Nom_formel_tableau[index] &Nom_formel_tableau[index]

Tableau à
une
dimension

Nom_tableau[][m_max] Nom_tableau[i][j] &Nom_tableau[i][j]

composé

Tableau à
deux
dimensions

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 26

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 27

Exemple de traduction d'un organigramme en langage C

uc *: ptr_yr0

uc : nb affiche

uc*: ptr_xr0

uc *: ptr_xr1

uc : xcar

uc* : ptr_xr2

Retour(uc)

Retour(uc)

lecture_clavier

ptr_zr0 ← msg_bravo

resultat=0

essais

sortie ← 0

variables

uc* : "message + balises"

resultat=1

ptr_zr0 ← msg_perdu

sortie ← 1

printf

sortie=1

mot1

nb_tentatives

&ref1[0]

caractere

resultat

&nb_tentatives

mot1

caractere

"resultat = %s"

ptr_zr0

do
 {
 affiche(mot1, nb_tentatives);

 caractere = lecture_clavier();

 resultat = essais(mot1, &ref1[0], caractere, & nb_tentatives)

 if (resultat ==0)
 { sortie = 0;
 }
 else
 {
 if (resultat == 1)
 { ptr_zr0 = msg_bravo;
 }
 else
 { ptr_zr0 = msg_perdu;
 }

 printf("resultat= %s", ptr_zr0);

 sortie = 1;
 }
 }
 while (!(sortie==1));

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 28

Présentation d'une fonction en organigramme

Nom_fonction
Retour(Type)

variables locales

Te v1

Tes * p_ v2

Organigramme de la fonction

Vue extene de la fonction

Nom_fonction

Retour(Type)Te v1

Tes * p_ v2

Exemple

lecture_des_entrées
uc :*p_xmem_entree

calcul_action_transitionuc : xetat_mae

uc : xmem_entree

uc : *p_xmem_sortie

calcul_action_etat

uc : *p_xeta_mae

uc : xmem_entree
Evolution_mae

Variables locales
uc mem_entree;

&mem_entree

p_ymem_sortie

mem_entree

mem_entree

uc:*p_yetat_mae

uc: *p_ymem_sortie

*p_yetat_mae

p_yetat_mae

Gestion_codeur

Actualisation_des_sorties

uc: xmem_sortie*p_ymem_sortie

void gestion_couleur(
 unsigned char *p_yetat_mae,
 unsigned char *p_ymem_sortie)
{

unsigned char mem_entree;

lecture_des_entrees(&mem_entree);

calcul_action_transition(

 *p_yetat_mae, mem_entree,
 p_ymem_sortie);

Evolution_mae(mem_entree,

 p_yetat_mae);

calcul_action_etat();

Actualisation_des_sorties(*p_tmem_sortie);

}

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 29

Langage C (partie 3)

 Fonctions d'entrées-sorties standard en langage C

Représentation sous forme de composants logiciels

Fonctions de sortie standard
La sortie standard du langage C est un écran que nous appellerons terminal
On peut répartir les fonctions de sortie standard en 3 groupes de base :

Affichage :

- d'un caractère
- d'une chaîne de caractères
- formaté : on peut choisir la façon d'afficher tout type d'information.

Terminal

caractère

Chaîne de caractères
putchar

puts

Affichage formatée
printf

Notation de type pour les composants
c = char uc = unsigned char
i = int ui = unsigned int
f = float

Fonctions Exemples
Affichage d'un caractère

putchar

c code_ascii

Prototype :
char putchar(char code_ascii)

retour(c)

a) Afficher le caractère A sur l'écran
putchar('A');

b) Afficher le caractère donc le code ascii est dans la
variable, car, de type char

putchar(car);

Affichage d'une chaîne de caractères

puts

c* ptr_chaine

Prototype :
int puts(char* ptr_chaine)

retour(int)

a) Afficher la chaîne de caractères "TEST" sur l'écran
puts("TEST");

b) Afficher la chaîne de caractères stockée dans la variable,
tab_car, de type tableau de char

puts(tab_car);

Remarque importante:
On doit s'assurer que la chaîne, tab_car, se termine par 0x00.
Sinon la fonction affichera des caractères erronés.

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 30

Affichage formaté

printf

c* texte_et_balises

Prototype :
int printf ("texte_et_balises", paramètres)

retour(int)
paramètres

Remarques :
1- Texte est une chaîne constante de caractères.

2- "paramètres" est la liste des variables à visualiser séparées par des virgules.

3- Une balise est une indication de la façon d'interpréter l'information binaire à afficher. Il est noté % suivi
d'un caractère d'interprétation

%c = interprété comme un caractère
%s = interprété comme une chaîne de caractères
%u = interprété comme un entier non signé
%d = interprété comme un entier signé
%x = interprété comme un entier non signé et visualisé en hexadécimal
%f = interprété comme un nombre en flottant visualisé sous la forme xxx.yyy

 Pour les balises %u, %d, %x on peut préciser le nombre de digits à afficher.

a) les digits manquants sont remplacés par des espaces, si le nombre compte moins de digits à afficher,
syntaxe : %nu %nd %nX ou %nx

b) les digits manquants sont remplacés par des 0, si le nombre compte moins de digits à afficher.
syntaxe : %0nu %0nd %0nX ou %0nx

c) %f

syntaxe : %n.mf n digits pour la partie entière
 m digits pour la partie fractionnaire

4- La balise doit être compatible avec le type d'information à afficher. On peut cependant utiliser la
conversion explicite (Cast) pour forcer la compatibilité. Par exemple afficher un unsigned char avec la
balise %u peut produire un résultat curieux en fonction du compilateur. Certains compilateurs assurent
des conversions implicites correctes et d'autres pas. En effet, %u est associé aux entiers donc pour forcer
la compatibilité, il suffit de faire un cast de la variable en écrivant (unsigned int) nom_variable.

5- Certains compilateurs ne supportent pas trop de paramètres dans une seule fonction printf. Il est conseillé
de le faire en plusieurs printf.

6- Quelques caractères spéciaux utiles :
 \n aller à la ligne suivante
 \r aller au début de la ligne en cours
 \0x00 fin de la chaîne de caractères

Exemples

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 31

Exemples printf(suite)

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 32

Fonctions d'entrée standard
L'entrée standard du langage C est un clavier.
On peut répartir les fonctions d'entrée standard en 3 groupes .

Lecture :

- d'un caractère
- d'une chaîne de caractères
- formatée :

Clavier

caractère

Chaîne de caractères
getchar - _getkey

gets

lecture formatée
scanf M

ic
ro

co
nt

rô
le

ur

Fonctions Exemples
Lecture d'un caractère tapé au clavier sans écho
(sans affichage sur l'écran du symbole du caractère
tapé).
La fonction est bloquante. C'est-à-dire qu'elle
attend jusqu'à ce qu'un caractère soit tapé.

_getkey

Prototype :
char _getkey(void)

retour(c)

Lecture d'un caractère tapé au clavier avec écho
(avec affichage sur l'écran du symbole du caractère
tapé)
La fonction est bloquante. C'est-à-dire qu'elle
attend jusqu'à ce qu'un caractère soit tapé.

getchar

Prototype :
char getchar(void)

retour(c)

Indication de caractère disponible provenant du
clavier
La fonction est non bloquante. C'est-à-dire qu'elle
n'attend pas qu'un caractère soit tapé.

kbhit

Prototype :
bit kbhit(void)

retour(bit)

 CHAP5_Langage_C_2020_2021_v1.doc A.Nketsa DGEII Toulouse 3 33

Lecture d'une chaîne de caractères tapés au
clavier

gets

c* ptr_chaine

Prototype :
char* gets(char* ptr_chaine,

unsigned int xnb_car)

retour(* char)
ui xnb_car

On doit indiquer :
- la chaîne de caractères où les codes ascii des

caractères tapés doivent être stockés
- le nombre de caractères acceptés

La fin de saisie de la chaîne intervient si on tape :
 Enter , Espace

Si on tape :
- moins de caractères que prévus, la fonction

retourne une chaîne de caractères avec insertion
automatique de \0x00 (fin de la chaîne)

- plus de caractères que prévus, la fonction
tronque à xnb_car -1 et chaîne de caractères
avec insertion automatique de \0x00 (fin de la
chaîne)

Il est donc de votre responsabilité de prévoir
suffisamment de places par rapport au nombre
xnb_car.

Lecture des informations formatées

scanf

c* balises

Prototype :
int scanf ("balises", paramètres)

retour(int)* paramètres

Cette fonction fonctionne assez mal pour le
formatage des informations. La moindre erreur de
saisie crée des décalages de gestion du buffer
d'entrée. Par ailleurs, comme la longueur de la
chaîne n'est pas précisée, on risque des
débordements mémoires.

Pour lire les informations formatées, nous
conseillons d'utiliser la fonction gets et les fonctions
de conversions comme :

atoi convertir une chaîne de caractères en un
entier signé ou non

atof convertir une chaîne de caractères en un float

