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Introduction  
 

Définition :  
 
Système embarqué : c'est un système électronique et informatique autonome 

construit pour effectuer des tâches précises. 
 
L’informatique embarquée ou informatique industrielle consiste à utiliser un 
ordinateur pour commander des dispositifs.  

En général, ces ordinateurs sont spécialisés et sont constitués des 
composants suivants : 
- Microcontrôleur et/ou microprocesseur  (Chef d’orchestre) 
- des périphériques : 

* Mémoires  
* Entrées (par exemple des capteurs) 
* Sorties  (Par exemple des moteurs) 

 
Informatique embarquée et informatique industrielle utilisent les mêmes 
techniques 
 

Pour construire ce genre de système, on a besoin des compétences : 

- en Electronique numérique    pour construire la carte électronique et certains 
composants. 

Par exemple : on doit utiliser un circuit imprimé permettant de faire les 
connexions entre microcontrôleur- mémoire – entrées – sorties – 
partie puissance. 

- en programmation pour les systèmes embarqués 

- en électronique de puissance pour l'énergie 

- en électronique analogique pour le conditionnement des capteurs 
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Les systèmes embarqués sont partout 
 

Quelques domaines d'application 

 

Transport 

-Aéronautique :    

Avion - Hélicoptère - Drone - Pilotage automatique  – contrôle de 
navigation 

 - Maritime :        

Navire (Pilotage automatique) 

 - Ferroviaire  :       

TGV - Metro 

- Automobile :      

Véhicule autonome - Assistant de conduite (GPS - ABS - Airbag – etc) 

 

Robotique 

 

Santé 

Appareils de mesure, d'exploration et d'intervention 

Equipement courant :  

Téléphone portable – imprimante – copieurs – console de jeu – télévision 

Equipement dans le bâtiment :  

Ascenseurs – contrôle d'accès – système de surveillance, éclairage automatique  

Equipement de production 

Communication : Satellites 

 



 

Représentation de nombres binaires A. Nketsa  4 

Résumé : Représentation des nombres binaires 
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1- Bases de numération 
  
Tout nombre entier naturel peut être exprimé dans une base B. 
Soit N un nombre entier  0,  
N se décompose dans la base B  sous la forme    

 
N = an-1*Bn-1 +    + a0*B0  noté   N = (an-1        a0)B 

B est la base   et ai  [0, B-1] ai sont appelés les symboles ou digits 
Exemple: 

259  = 2*102 + 5*101 + 9*100 

 
2-Bases usuelles  en informatique embarquée 

Base décimale (ou encore base 10) 
B = 10    et ai  [0, 9]  ai sont les symboles aussi appelés chiffres 

Base binaire (ou encore base 2) 
B = 2    et ai  [0, 1]  ai sont les symboles aussi appelés bits 

Base hexadécimale (ou encore base 16) 
B = 16   ai  [0, 16-1]  les ai sont appelés les symboles ou digits  
 Comme un symbole ne doit comporter qu'un seul élément, 

 Par convention, dans la base hexadécimale : 
10 est noté A,  11 est noté B,  12 est noté C, 13 est noté D, 14 est noté E , 
15 est noté F 

 d'où ai  [0, F] 
 
B = 16    et ai  [0, 9, A, B, C, D, E, F] ai sont les symboles aussi appelés symboles hexadécimaux 
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3- Changement de base 

3-1 Décimal (base 10)  vers base B    méthode par divisions successives 

 

Changement de base 
 nombre décimal vers nombre en Base B 

Le nombre décimal à convertir est dec_ns 

r(i) = reste (q/B)
q    = quotient  (q/B)
i     = i + 1

q = 0

r(0) = 0
q    = dec_ns
i     = 0

dec_ns 
= (r(i-1)…r(0))B

cv_dec_ns_vers_Base

 
 

Exemple  convertir 39 en binaire 
 

39 2

1938
-

1 918

8 4

1

4

2

2

00 Dernier
quotient

0

0

1

1

1

2

2

-

-

-

-

-
2

2

2

 
39 = (100111)2  
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3-2 Base B vers décimal  application de la définition d'un 
nombre 
Changement de base 

 nombre en Base B vers décimal 

N = (an-1        a0)B 

cv_Base_vers_dec_ns

Application de la définition

Dec_ns = an-1B
n-1 + .. a0B

0

 

Exemples 

 

 
(100111)2 = 1*25 + 0*24 + 0*23 + 1*22 +1*21 + 1*20   = (39)10  
 
 
3-3 Approche générale : Changement de Base X vers base Y 
 

Base X

Base décimale

Base Y
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3-4 Changement de bases usuelles et cas particuliers  

a) Base 2 : Décimal  (base 10) vers binaire (base 2)    divisions 
successives 

Changement de base 
 Nombre en Base 10 vers nombre en Base 2 

r(i) = reste (q/2)
q    = quotient  (q/2)
i     = i + 1

q = 0

r(0) = 0
q    = dec_ns
i     = 0

dec_ns 
= (r(i-1)…r(0))B

cv_dec_ns_vers_Binaire

 

Exemple déjà traité 

 

b) Binaire (Base 2) vers décimal   définition d'un nombre  
Changement de base 

 nombre en Base 2 vers nombre en base 10 

cv_Binaire_vers_dec_ns

Application de la définition

Dec_ns = an-12
n-1 + .. a02

0

 
 
Exemple déjà traité 
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c) Base hexadécimale (base 16) : 
Décimal  (base 10) vers hexadécimal (base 16)    divisions successives 

Changement de base 
 nombre en Base 10 vers nombre en base 16 

r(i) = reste (q/16)
q    = quotient  (q/16)
i     = i + 1

q = 0

r(0) = 0
q    = dec_ns
i     = 0

dec_ns
= (r(i-1)…r(0))16

cv_dec_ns_vers_hexadécimal

 

 

 
Exemple  convertir 39  en hexadécimal 
 

-

-

39 16

1632

2

2

007 Dernier
quotient

 
 39   =  (27)16 
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d) Hexadécimal (Base 16) vers décimal   définition d'un nombre  
Changement de base 

 nombre en Base 16 vers nombre en base 10 

cv_hexadécimal_vers_dec_ns

Application de la définition

Dec_ns = an-116n-1 + .. a0160

 
 
Exemple : 
(27)16 = 2*161 + 7*160   = 2*16  +  7*1  = 39
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Cas particuliers : 
 
a) Binaire  (base 2) vers hexadécimal (base 16)    

Règle : 

1- On regroupe les bits de droite à gauche par 
paquet de 4bits 

2- On convertit chaque paquet de 4bits en 
hexadécimal 

Exemple 
 
(1101)2   = (D)16 
 
 
 

 
 
 
b) Hexadécimal (Base 16) vers Binaire (base 2) 

Règle : 

On convertit chaque symbole hexadécimal en 
binaire sur 4bits 

Exemple 
 
(A)16  =  (1010)2   
 
 

 

Remarques importantes : 
- La base hexadécimale est la notation compactée de la base binaire 

- Il est conseillé de connaître par cœur  

la correspondance   binaire  hexadécimal 
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Réduction du nombre de divisions ou de multiplications pour les 
conversions 

binaire  décimal 
 
- Pour réduire le nombre de divisions successives ou de multiplications, il est 

conseillé de passer par la base 16,  on réduit ainsi le nombre d'opérations dans 
un rapport de 4. 

 
Binaire vers décimal 
 

regroupement

11110011

Binaire décimal

Hexadécimal

Définition
Nombre dans la base 10

F3 15*161 + 3*160  = 243

au lieu de 1*27 + 1*26 + 1*25 + 1*24 +0*23 +0*22 + 1*21 +1*20 
 
Décimal vers binaire 
 

Divisions
Successives
Par 16

243

Décimal Binaire

Hexadécimal

Conversion de chaque digit 
hexadécimal
en binaire sur 4 bits

F3 1111 0011

au lieu de 8 divisions par 2  
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3-5 Notation 

- les nombres décimaux (base 10) seront notées comme habituellement.   dddd 
 d  [0, 9] 

- les nombres binaires seront notés avec le suffixe b    xxxxxb      
x  [0, 1] 

- les nombres hexadécimaux : 2 notations :  avec préfixe     0xhhhh   
 h   [0, A, B, C, D, E, F] 

        avec suffixe    yyyyh
 y   [0, A, B, C, D, E, F]
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4- Représentation et interprétation des nombres binaires 

En informatique industrielle ou embarquée,  

- l'information de base est binaire.   

Donc la base naturelle est binaire  

- la même configuration binaire peut être interprétée de plusieurs manières. 
 
En binaire, on peut représenter : 

- les nombres binaires non signés (notés ns) 

- les nombres binaires  signés (notés sg) 

- les nombres au format BCD (simple ou packed)  noté BCD 

- les symboles (codes ASCII) noté entre apostrophes 'A'  lu code ASCII de A 

- les nombres fractionnaires 

- les nombres en virgule fixe  non signés et signés 

- les nombres en virgule flottante 
 
 
4-1 Nombres binaires non signés  

 

Ce sont des nombres  0 .  

 

Ce sont les nombres binaires naturels  
 
 
Avec n bits, on peut représenter les nombres  0  allant de 0 à 2n-1 
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4-2 Nombres binaires signés  

Ce sont des nombres  négatifs  ou positifs ou nul 

Il existe plusieurs représentations possibles.  

Mais nous ne parlerons que de celle qui est utilisée dans les calculateurs.  

C'est la représentation en complément à deux (notée cpl2). 

Représentation en complément à deux 

Avec n bits, on peut représenter les nombres de -2n-1  à  +(2n-1 )-1 

 

Caractéristiques 

- le nombre de bits de la représentation doit être fixé 

- le signe est le bit de poids fort (bit le plus à gauche du nombre) 

- par convention le bit de signe, 

SF = 0  =>  nombre positif ou nul 
SF = 1  => nombre négatif 

- l’opposé, x’, d’un nombre, x, est tel que x’ + x = 0 sur le nombre de bits de la 
représentation. 

x’ est complément à 2 de x 

   Règle : 

Le complément à 2 d'un nombre binaire s'obtient : 

- en faisant le complément à 1 = complémenter chaque bit 

- en ajoutant 1 au complément à 1 

- le bit de signe fait partie intégrante du nombre signé. On ne peut pas dissocier le 
signe du nombre pour calculer sa valeur absolue. 

- zéro est son propre opposé 

- le plus petit nombre négatif ( = -2n-1 ) est aussi son propre opposé. 

Exemple : le nombre de bits de la représentation est 3 

3 bits   8 combinaisons binaires  

codage des nombres de -22   à +22 -1    -4    à  +3 
Valeur binaire 111 110 101 100 011 010 001 000 
Valeur décimale 
non signée 

7 6 5 4 3 2 1 0 

Valeur décimale  
signée 

-1 -2 -3 -4 3 2 1 0 

 

-4 -3 -2 -1 +0 +1 +2 +3

100 101 110 111 000 001 010 011
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Conversions de nombres signés 
Remarque importante : 

Avant toute conversion de nombre binaire signé, on doit obligatoirement fixer le 
nombre de bits du mot. Ceci permet de déterminer la position du signe et sa valeur. 
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Décimal_signé vers binaire_signé 

dec_sg  0

Conversion habituelle de dec_sg

( cv_dec_ns_binaire (dec_sg))

Extension du nombre sur le 
nombre de bits de la représentation :
 Ajouter des 0 à gauche

- Calcul valeur absolue de dec_sg

N_abs = - dec_sg

Conversion de N_abs comme
dec_sg  0  + extension nbre bits

( cv_dec_ns_binaire(N_abs))

Prendre le cpl à 2 du résultat binaire

Identifier le nombre de bits de la représentation

cv_dec_sg_vers_Binaire















 
 
Exemple 
Convertir en binaire signé en complément à 2 sur 8bits 
a) -102 b) +102 
  nombre de bits = 8  nombre de bits = 8 
 -102 < 0 
 

 102  ≥ 0 

 Valeur absolue  
   -102=   102 
 

 positif ou nul  conversion habituelle 
décimal  binaire naturel  102 = 70H  = 
01110000b 
 

 Conversion en binaire avec 
extension     102 = 70h = 01110000b 
 

 

 Complément à deux de  01110000  
              10001111 
            +              1 
               10010000 
 

 

Résultat -102 = 10010000b 
 

Résultat +102 = 01110000b 
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Binaire_signé vers decimal_signé 

Bit_signe = 0

Conversion habituelle de binaire en dec_ns

cv_binaire_vers_dec_ns (binaire_sg)

Affecter le signe plus (+ )au résultat

-Calcul valeur absolue de binaire_sg
B_abs = cpl à 2 de binaire_sg

Affecter le moins (-) plus au résultat

Identifier le nombre de bits de la représentation

cv_binaire_sg_vers_dec_sg

Conversion habituelle de binaire vers dec_ns

cv_binaire_vers_dec_ns (B_abs)















 

 
Exemple 
Convertir en décimal signé le nombre binaire en complément à 2 sur 
8bits 
a) 11111111b  b) 00111111b 
  nombre de bits = 8  nombre de bits = 8 
  bit de signe = 1 donc nbre < 0 
 

 bit de signe = 0  donc nbre  ≥ 0 

 Valeur absolue  
11111111b=   Cpl2 de 11111111b 
                      = 00000001b 
 

 positif ou nul  conversion habituelle 
décimal vers binaire naturel  
00111111b=3FH = 63 

 Conversion en décimal de l 
avaleur absolue    
  00000001h = 01H = 1 
 

 Résultat +63 

   -1 
 

 

Résultat  11111111b = -1 
 

Résultat  00111111b = +63 
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4-4 Nombre BCD  ou Code BCD 
 
Définition 
Un nombre BCD (Binary coded decimal) ou en français (DCB =décimal codé 
binaire)  est un nombre binaire sur quatre bits représentant le code binaire d'un 
chiffre décimal. 
On peut mettre plusieurs nombres BCD côte à côte pour avoir l’équivalent d’un 
nombre décimal, on dit alors que c'est BCD packed. 

Correspondance BCD simple 
Chiffre 
décimal 

0 1 2 3 4 5 6 7 8 9 

Code 
BCD 

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

 

BCD Packed 
45H =  01000101b   =  45 en décimal 
 
 
 

Remarques importantes : 
1- Tout nombre BCD est binaire 
Exemple 
Le nombre binaire 100100001000b est BCD car  les groupes de 4bits de droite à gauche 1001 0000 
1000b ont tous leur valeur décimale correspondante   9 
 
 
 
 
 

2- Tout nombre binaire n’est pas BCD 
Exemple 
Le nombre binaire 101100001000b n'est pas BCD car  parmi les groupes de 4bits de droite à gauche 1001 
0000 1011b au moins un groupe > 9 
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Code ascii 
Table  
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4-5 Représentation des nombres binaires en virgule fixe et en flottant 
 
4-5-1- Nombres binaires fractionnaires 
Un nombre binaire fractionnaire est un nombre ayant deux parties séparées par une 
virgule (,) : la partie entière et la partie fractionnaire. 
La partie entière vaut 0  
La partie fractionnaire est décrite avec des puissances négatives de la base 
 

Formule  générale : 
 

Nfractionnaire =  




mj

1i

j-2*aj  

Exemple 
(0,01)2  = 0*2-1 + 1*2-2  
  =  0*0,5 + 1*0,25  = 0,25 
 
 
Conversions 

Partie fractionnaire  
a) Décimal – binaire  

La partie fractionnaire est convertie comme un nombre binaire non signé par divisions 
successives mais comme on divise par 2-1 cela revient à multiplier les résultats par 2 puis on 
garde pour le codage la partie entière qui peut être 0 ou 1 et on reprend la partie 
fractionnaire pour la multiplication suivante. 

Exemple : Convertir 0,62 en binaire 
Il faut noter que la partie fractionnaire peut être illimitée. Dans la pratique, on doit 
cependant fixer le nombre bits. 

0,62 * 2 = 1,24  on garde 1 puis on recommence le processus avec 0,24 
0,24 * 2 = 0,48  on garde 0 puis on recommence le processus avec 0,48 
0,48 * 2 = 0,96  on garde 0 puis on recommence le processus avec  0,96 

On arrête par exemple à la troisième décimale 
 D'où 0,62 = 0,100b 
 

b) Binaire – décimal 
On applique la formule d'expression de la partie fractionnaire. La partie fractionnaire est une 
somme pondérée des puissances négatives de 2  avec comme coefficients de pondération  
ai  [0,1].  

Exemple convertir en décimal le nombre binaire fractionnaire 0,1101b 
0*20 + 1*2-1 + 1*2-2 + 0*2-3 + 1*2-4 = 0,8125 
 

 Remarque : 
  On peut éviter les puissances négatives de 2 en procédant de la façon suivante : 

- On compte le nombre de bits, x, de la partie fractionnaire 
- On convertit en binaire sans tenir compte de la virgule 
- On divise le résultat obtenu par 2x   
Application : 
0,1101  on considère  la partie fractionnaire 1101 
   On a 4 bits et  1101 = 13 
   Donc la partie fractionnaire  vaut  13/24  =  0,8125 
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4-5-2- Nombres binaires en virgule fixe  
4-5-2-1 Nombres binaires positifs ou nul en virgule fixe  
Un nombre binaire en virgule fixe comporte deux parties : 

- une parie entière, placée avant la virgule 
- une partie fractionnaire placé après la virgule 
(an-1..a0 , e-1..e-m)virgule_fixe 

 

Formule  générale : 
 
 

Nréel = 




1-ni

-mi

i2*bi   = 




1-ni

-0i

i2*ai        +         




-1i

-mi

i2*ei  

n est le nombre de bits avant la virgule 
m est le nombre de bits après la virgule 

Comme on ne peut pas introduire la virgule comme un symbole supplémentaire en binaire, et 
comme son nom l'indique, pour en faire une utilisation cohérente, il est conseillé de fixer par 
convention la position de la virgule (,). 
 
Conversions 
Il est conseillé de convertir chaque partie individuellement puis de transcrire les résultats en les 
séparant par une virgule (,). 
Se reporter aux nombres binaires fractionnaires 

Exemple 
a) Décimal vers virgule fixe 
Convertir 47,70 en binaire virgule fixe 
 
On convertit la partie entière et la partie fractionnaire 
(47)    = 101111b 
 
On convertit la partie fractionnaire 
0,70 * 2  = 1,40  bit -1 = 1 on recommence avec 0,40 
0,40 * 2  = 0,80  bit -2 = 0 on recommence avec 0,80 
0,80 * 2  = 1,60  bit -3 = 1 on recommence avec 0,60 
0,60 * 2  = 1,20  bit -3 = 1 on recommence avec 0,20 
   
Nous arrêtons ici parce que la suite peut être très longue. 
   0,70 = (0,1011b) 

 47,70 = (101111,1011b) 
 
b) Virgule fixe vers décimal 
 Convertir en décimal le nombre en virgule fixe 1100,11101b 

On convertit chaque partie : 
  

Partie entière 
1100b = 12 

  
Partie fractionnaire 

0,11101b = 0*20 + 1*2-1 + 1*2-2 + 1*2-3 + 0*2-4 + 1*2-5 = 0,90625 

   Ou (11101) = 29 / 25  = 0,90625 

1100,11101b = 12,90625 
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4-5-2-2 Nombres binaires signés en virgule fixe  
 
Mêmes règles que pour les nombres binaires signés sans virgule 
- Bit de signe 
- Règles de conversion en décimal 
 
Remarque importante 
On fait le calcul du complément à deux sans tenir compte de la virgule. 
On replace la virgule après le calcul. 
 
Exemple 
On considère un nombre en virgule fixe avec 8bits partie entière et 4 bits partie fractionnaire 
Convertir en décimal le nombre   11110000,1010b 

- bit de signe = 1  donc nombre < 0 

- On prend la valeur absolue = cpl2 (11110000,1010) 
Soit      00001111,0101 
           +                      1 

                                            Résultat   00001111,0110 

- D'où la valeur absolue  15, 375 

- 11110000,1010b  = -15,375 
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4-6-Nombres binaires en virgule flottante  
La représentation en virgule flottante est un codage qui permet d'augmenter la dynamique et la 
précision de représentation des nombres binaires. Elle permet de se rapprocher des nombres réels. 
La représentation en virgule flottante est un codage permettant de transcrire la fonction : 

N =  M x Be  
N est un nombre réel, M est appelé la mantisse, B est la base et e est l'exposant 

Dans notre cas B sera égal 2 (base binaire) 
 
En binaire, on ne peut pas ajouter des symboles, il faut définir par convention ce qui représente 
chaque élément de la formule.  
 
Une solution consiste  à : 

- définir la taille du mot binaire représentant le nombre flottant 
- définir l'organisation du mot binaire en indiquant la place et la taille de l'exposant, de la 

mantisse et de son signe 

 Exemple de mot binaire et son organisation: 
Code_signe Code_exposant Code_mantisse 

1bit e_bit m_bit 

La base est implicite mais on doit fixer le nombre de bits (1 + e_bit + m_bit) de la représentation en 
indiquant le nombre de bits associé au : 

- codage du signe de la mantisse, code_signe  (1bit) 
- codage de l'exposant, code_exposant  (e_bit) 
- codage de la mantisse, code_mantisse  (m_bit) 

 
Cette représentation peut être normalisée sous plusieurs formats. Il faut donc définir les relations 
entre la formule générale et le codage, c'est-à-dire entre : 

code_signe et le signe du nombre 
code_exposant et e 
code_mantisse et M 
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Standard IEEE754 
Nous allons considérer le standard  IEEE 754 qui est couramment utilisé par les compilateurs de 

langages informatiques et en électronique numérique.  
Il définit deux formats de représentations de nombre en flottant: 
- une représentation sur 32bits (simple précision) 
- une représentation sur 64bits (double précision) 
 

Nous allons faire cette présentation avec le format simple précision 
 
Flottant simple précision IEEE754 
 

Code_signe Code_exposant Code_mantisse 
1bit 8bits 23bits 

 

Le codage du signe sera sur un bit avec la convention habituelle   

0 = positif ou nul 1 = négatif 

Le codage de l'exposant sera sur 8 bits avec un décalage (aussi appelé biais).  
Le décalage (= 2n-1) est souvent exprimé en fonction du nombre de bits de codage de l'exposant. 
n est le nombre de bits de codage de l'exposant avec la relation :  

e =  code_exposant – décalage.  

Comme n = 8, décalage = 127. Donc e =code_exposant – 127. 

 

Le codage de la mantisse sera sur 23bits.  
On admettra  que la mantisse est de la forme 1,ffffff mais on ne stockera que la partie fractionnaire 
0, ffffff et on considèrera dans le cas général que la partie entière 1 est implicite. 
 
Nous nous limiterons aux nombres normalisés 
 
 
D'où la formule générale pour les nombres normalisés 
  Nréel = (-1)code_signe * (1+ (code_mantisse)fractionnaire) * 2(code_exposant - 127) 
    avec code_exposant ≠ 0 et 255 
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Cas particuliers de la représentation 
Cette représentation permet de représenter un nombre fini de possibilités. Par ailleurs, elle ne 

permet pas de bien représenter tous les cas de figure que nous allons traiter comme des cas 
particuliers qui sont définis par la convention de la norme. 

a) Représentation de 0 
  code_exposant = 0  et code_mantisse = 0 
 Cette convention conduit à un 0 positif et un 0 négatif 

b) Représentation des nombres dénormalisés (nombres très petits) 
  code_exposant = 0  et code_mantisse ≠ 0  
  Nréel = (-1)code_signe * (code_mantisse)fractionnaire * 2(0) 

Dans ce cas exposant est par convention -126 pour la conversion 

c) Représentation de l'infini 
  code_exposant = 255 et code_mantisse = 0 (Utilisée pour la division par 0) 
  donc  +  est représenté par code_signe = 0 
   -   est représenté par code_signe = 1 

c) Représentation d'un nombre non reconnu (utilisée pour la division /) 
  code_exposant = 255 et code_mantisse ≠ 0 
  
Quelques exemples 
Nombre réel (N) signe code_exposant code_mantisse  valeur 
+0 0 00000000 000 0000 0000 0000 0000 0000 0.0 
-0 1 00000000 000 0000 0000 0000 0000 0000 -0.0 
+ 0 11111111 000 0000 0000 0000 0000 0000 + 
- 1 11111111 000 0000 0000 0000 0000 0000 - 
NaN  * 11111111 ≠ 0 Non nombre 
Plus petit N ≥ 0 
dénormalisé 

0 00000000 000 0000 0000 0000 0000 0001 (-1)0 *2-126 *2-23  
= 2-149 
= 5,9*10-39 

Plus grand  N ≥ 0 
normalisé 

0 11111110 111 1111 1111 1111 1111 1111 (-1)0 *2127 *…  
= 3,4028*1038 

Plus petit N ≥ 0 
normalisé 

0 00000001 000 0000 0000 0000 0000 0000 2-126 
= 1,1754*10-38 
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Conversions décimal  flottant 
 
Ndecimal = 2exposantxMantisse      Codage IEEE754 

code_signe code_exposant code_mantisse

bit31 bit30          bit23 bit22              bit0

 
 

a) Conversion décimal  flottant 
Elle revient : 
- à calculer code_signe, code_exposant et code_mantisse 
- à constituer les 32bits 
 
Par simplification, on ne traitera que le cas des nombres normalisés 
Cependant, on traitera les cas particuliers de 0 et   
 
D’où l'organigramme 
 

nb_dec=0 nb_dec=+ nb_dec=-

code_signe=0
code_exposant = 0
code_mantisse = 0

code_signe=0
code_exposant = 255
code_mantisse = 0

code_signe=1
code_exposant = 255
code_mantisse = 0

normalisé

Détermination de signe, exposant, mantisse
1) signe = 0 si nb_decimal  0  sinon  signe =1
2) calculer la valeur absolue de nb_decimal, abs
3) convertir abs en virgule fixe
4) mettre abs  virgule_fixe en 1,FFFFFFF

par déplacement de la virgule
- vers la gauche on multiplie par 2n

- vers la droite on multiplie par 2-n

n est le nombre de déplacements
5) on en déduit :

exposant et mantisse
6) d'où    code_signe = signe

code_exposant = exposant +127
code_mantissse = FFFFFF

code_signe code_exposant code_mantisse

bit31 bit30          bit23 bit22              bit0
 

 
Exemple : 
Convertir 12,25 en flottant 
Nombre ≥ 0      Code_signe = 0 
On procède comme en virgule fixe pour la valeur absolue 
12,125 = 1100,001 
On déplace la virgule pour avoir l'exposant et la mantisse 
 1100,001 = 1,100001*23  

Exposant = 3  Code_exposant = exposant +127 = 130 
    Soit en binaire sur 8 bits 10000010b 
Mantisse = 1,100001 Code_mantisse = 10000100000…0 

 
12,125 en flottant  0 10000010 10000100000000000000000b
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b) Conversion flottant  décimal 
Elle revient  
- à identifier dans les 32 bits code_signe, code_exposant et code_mantisse 
- si code_signe, code_exposant et code_mantisse représentent 0 ou   

alors  
la conversion est faite par convention 

sinon 
en déduire signe, exposant = code_exposant -127 et mantisse = 1,code_mantisse 
et par suite le N = Ndecimal = 2exposant.Mantisse       

 

code_exposant=0

code_mantisse=0

signe= code_signe

Nreel = (-1)signe * 0

zéro

Nombre dénormalisé

Signe=code_signe
Exposant = -126
Mantisse= code_mantisse
Nreel = (-1)signe * 2(-126) * mantisse

code_exposant=255

code_mantisse=0

signe= code_signe

Nreel = (-1)signe * 

Infini Not a number (NaN)

Nombre non reconnu

Signe=code_signe
Exposant = code_exposant + 127
Mantisse= 1,code_mantisse
Nreel = (-1)signe * 2(exposant) * mantisse

Nombre normalisé

Code_exposant
est un nombre binaire signé en cpl2

 
 
Exemple 
Convertir le nombre en flottant : C142000H 
 
- On convertit en binaire pour identifier les champs 

1100 0001 0100 0010 0000 0000 0000 0000 
1            10000010           100 0010 0000 0000 0000 0000 

1 10000010 10000100000 0000 0000 0000 
Code_signe    code_exposant code_mantisse 
Signe = - exposant = code_exposant -127 

donc  exposant = 130 – 127 = 3 
Mantisse = 1,code_mantisse 
Donc matisse = 1,1000010000000 

          
 N= - 1,1000010000 *23        = -1100,0010 = -12,125 


