

Représentation de nombres binaires A. Nketsa 1

Informatique Embarquée

Chap 0 : Introduction

Chap 1 : Résumé : Représentation des nombres binaires

S2

2020 – 2021

IUT A GEII Toulouse3

A. Nketsa

Représentation de nombres binaires A. Nketsa 2

Introduction

Définition :

Système embarqué : c'est un système électronique et informatique autonome

construit pour effectuer des tâches précises.

L’informatique embarquée ou informatique industrielle consiste à utiliser un
ordinateur pour commander des dispositifs.

En général, ces ordinateurs sont spécialisés et sont constitués des
composants suivants :
- Microcontrôleur et/ou microprocesseur (Chef d’orchestre)
- des périphériques :

* Mémoires
* Entrées (par exemple des capteurs)
* Sorties (Par exemple des moteurs)

Informatique embarquée et informatique industrielle utilisent les mêmes
techniques

Pour construire ce genre de système, on a besoin des compétences :

- en Electronique numérique pour construire la carte électronique et certains
composants.

Par exemple : on doit utiliser un circuit imprimé permettant de faire les
connexions entre microcontrôleur- mémoire – entrées – sorties –
partie puissance.

- en programmation pour les systèmes embarqués

- en électronique de puissance pour l'énergie

- en électronique analogique pour le conditionnement des capteurs

Représentation de nombres binaires A. Nketsa 3

Les systèmes embarqués sont partout

Quelques domaines d'application

Transport

-Aéronautique :

Avion - Hélicoptère - Drone - Pilotage automatique – contrôle de
navigation

 - Maritime :

Navire (Pilotage automatique)

 - Ferroviaire :

TGV - Metro

- Automobile :

Véhicule autonome - Assistant de conduite (GPS - ABS - Airbag – etc)

Robotique

Santé

Appareils de mesure, d'exploration et d'intervention

Equipement courant :

Téléphone portable – imprimante – copieurs – console de jeu – télévision

Equipement dans le bâtiment :

Ascenseurs – contrôle d'accès – système de surveillance, éclairage automatique

Equipement de production

Communication : Satellites

Représentation de nombres binaires A. Nketsa 4

Résumé : Représentation des nombres binaires

Représentation de nombres binaires A. Nketsa 5

1- Bases de numération

Tout nombre entier naturel peut être exprimé dans une base B.
Soit N un nombre entier  0,
N se décompose dans la base B sous la forme

N = an-1*Bn-1 + + a0*B0 noté N = (an-1 a0)B

B est la base et ai  [0, B-1] ai sont appelés les symboles ou digits
Exemple:

259 = 2*102 + 5*101 + 9*100

2-Bases usuelles en informatique embarquée

Base décimale (ou encore base 10)
B = 10 et ai  [0, 9] ai sont les symboles aussi appelés chiffres

Base binaire (ou encore base 2)
B = 2 et ai  [0, 1] ai sont les symboles aussi appelés bits

Base hexadécimale (ou encore base 16)
B = 16 ai  [0, 16-1] les ai sont appelés les symboles ou digits
 Comme un symbole ne doit comporter qu'un seul élément,

 Par convention, dans la base hexadécimale :
10 est noté A, 11 est noté B, 12 est noté C, 13 est noté D, 14 est noté E ,
15 est noté F

 d'où ai  [0, F]

B = 16 et ai  [0, 9, A, B, C, D, E, F] ai sont les symboles aussi appelés symboles hexadécimaux

Représentation de nombres binaires A. Nketsa 6

3- Changement de base

3-1 Décimal (base 10) vers base B  méthode par divisions successives

Changement de base
 nombre décimal vers nombre en Base B

Le nombre décimal à convertir est dec_ns

r(i) = reste (q/B)
q = quotient (q/B)
i = i + 1

q = 0

r(0) = 0
q = dec_ns
i = 0

dec_ns
= (r(i-1)…r(0))B

cv_dec_ns_vers_Base

Exemple convertir 39 en binaire

39 2

1938
-

1 918

8 4

1

4

2

2

00 Dernier
quotient

0

0

1

1

1

2

2

-

-

-

-

-
2

2

2

39 = (100111)2

Représentation de nombres binaires A. Nketsa 7

3-2 Base B vers décimal  application de la définition d'un
nombre
Changement de base

 nombre en Base B vers décimal

N = (an-1 a0)B

cv_Base_vers_dec_ns

Application de la définition

Dec_ns = an-1B
n-1 + .. a0B

0

Exemples

(100111)2 = 1*25 + 0*24 + 0*23 + 1*22 +1*21 + 1*20 = (39)10

3-3 Approche générale : Changement de Base X vers base Y

Base X

Base décimale

Base Y

Représentation de nombres binaires A. Nketsa 8

3-4 Changement de bases usuelles et cas particuliers

a) Base 2 : Décimal (base 10) vers binaire (base 2)  divisions
successives

Changement de base
 Nombre en Base 10 vers nombre en Base 2

r(i) = reste (q/2)
q = quotient (q/2)
i = i + 1

q = 0

r(0) = 0
q = dec_ns
i = 0

dec_ns
= (r(i-1)…r(0))B

cv_dec_ns_vers_Binaire

Exemple déjà traité

b) Binaire (Base 2) vers décimal  définition d'un nombre
Changement de base

 nombre en Base 2 vers nombre en base 10

cv_Binaire_vers_dec_ns

Application de la définition

Dec_ns = an-12
n-1 + .. a02

0

Exemple déjà traité

Représentation de nombres binaires A. Nketsa 9

c) Base hexadécimale (base 16) :
Décimal (base 10) vers hexadécimal (base 16)  divisions successives

Changement de base
 nombre en Base 10 vers nombre en base 16

r(i) = reste (q/16)
q = quotient (q/16)
i = i + 1

q = 0

r(0) = 0
q = dec_ns
i = 0

dec_ns
= (r(i-1)…r(0))16

cv_dec_ns_vers_hexadécimal

Exemple convertir 39 en hexadécimal

-

-

39 16

1632

2

2

007 Dernier
quotient

 39 = (27)16

Représentation de nombres binaires A. Nketsa 10

d) Hexadécimal (Base 16) vers décimal  définition d'un nombre
Changement de base

 nombre en Base 16 vers nombre en base 10

cv_hexadécimal_vers_dec_ns

Application de la définition

Dec_ns = an-116n-1 + .. a0160

Exemple :
(27)16 = 2*161 + 7*160 = 2*16 + 7*1 = 39

Représentation de nombres binaires A. Nketsa 11

Cas particuliers :

a) Binaire (base 2) vers hexadécimal (base 16)

Règle :

1- On regroupe les bits de droite à gauche par
paquet de 4bits

2- On convertit chaque paquet de 4bits en
hexadécimal

Exemple

(1101)2 = (D)16

b) Hexadécimal (Base 16) vers Binaire (base 2)

Règle :

On convertit chaque symbole hexadécimal en
binaire sur 4bits

Exemple

(A)16 = (1010)2

Remarques importantes :
- La base hexadécimale est la notation compactée de la base binaire

- Il est conseillé de connaître par cœur

la correspondance binaire  hexadécimal

Représentation de nombres binaires A. Nketsa 12

Réduction du nombre de divisions ou de multiplications pour les
conversions

binaire  décimal

- Pour réduire le nombre de divisions successives ou de multiplications, il est

conseillé de passer par la base 16, on réduit ainsi le nombre d'opérations dans
un rapport de 4.

Binaire vers décimal

regroupement

11110011

Binaire décimal

Hexadécimal

Définition
Nombre dans la base 10

F3 15*161 + 3*160 = 243

au lieu de 1*27 + 1*26 + 1*25 + 1*24 +0*23 +0*22 + 1*21 +1*20

Décimal vers binaire

Divisions
Successives
Par 16

243

Décimal Binaire

Hexadécimal

Conversion de chaque digit
hexadécimal
en binaire sur 4 bits

F3 1111 0011

au lieu de 8 divisions par 2

Représentation de nombres binaires A. Nketsa 13

3-5 Notation

- les nombres décimaux (base 10) seront notées comme habituellement. dddd
 d  [0, 9]

- les nombres binaires seront notés avec le suffixe b xxxxxb
x  [0, 1]

- les nombres hexadécimaux : 2 notations : avec préfixe 0xhhhh
 h  [0, A, B, C, D, E, F]

 avec suffixe yyyyh
 y  [0, A, B, C, D, E, F]

Représentation de nombres binaires A. Nketsa 14

4- Représentation et interprétation des nombres binaires

En informatique industrielle ou embarquée,

- l'information de base est binaire.

Donc la base naturelle est binaire

- la même configuration binaire peut être interprétée de plusieurs manières.

En binaire, on peut représenter :

- les nombres binaires non signés (notés ns)

- les nombres binaires signés (notés sg)

- les nombres au format BCD (simple ou packed) noté BCD

- les symboles (codes ASCII) noté entre apostrophes 'A' lu code ASCII de A

- les nombres fractionnaires

- les nombres en virgule fixe non signés et signés

- les nombres en virgule flottante

4-1 Nombres binaires non signés

Ce sont des nombres  0 .

Ce sont les nombres binaires naturels

Avec n bits, on peut représenter les nombres  0 allant de 0 à 2n-1

Représentation de nombres binaires A. Nketsa 15

4-2 Nombres binaires signés

Ce sont des nombres négatifs ou positifs ou nul

Il existe plusieurs représentations possibles.

Mais nous ne parlerons que de celle qui est utilisée dans les calculateurs.

C'est la représentation en complément à deux (notée cpl2).

Représentation en complément à deux

Avec n bits, on peut représenter les nombres de -2n-1 à +(2n-1)-1

Caractéristiques

- le nombre de bits de la représentation doit être fixé

- le signe est le bit de poids fort (bit le plus à gauche du nombre)

- par convention le bit de signe,

SF = 0 => nombre positif ou nul
SF = 1 => nombre négatif

- l’opposé, x’, d’un nombre, x, est tel que x’ + x = 0 sur le nombre de bits de la
représentation.

x’ est complément à 2 de x

 Règle :

Le complément à 2 d'un nombre binaire s'obtient :

- en faisant le complément à 1 = complémenter chaque bit

- en ajoutant 1 au complément à 1

- le bit de signe fait partie intégrante du nombre signé. On ne peut pas dissocier le
signe du nombre pour calculer sa valeur absolue.

- zéro est son propre opposé

- le plus petit nombre négatif (= -2n-1) est aussi son propre opposé.

Exemple : le nombre de bits de la représentation est 3

3 bits  8 combinaisons binaires

codage des nombres de -22 à +22 -1  -4 à +3
Valeur binaire 111 110 101 100 011 010 001 000
Valeur décimale
non signée

7 6 5 4 3 2 1 0

Valeur décimale
signée

-1 -2 -3 -4 3 2 1 0

-4 -3 -2 -1 +0 +1 +2 +3

100 101 110 111 000 001 010 011

Représentation de nombres binaires A. Nketsa 16

Conversions de nombres signés
Remarque importante :

Avant toute conversion de nombre binaire signé, on doit obligatoirement fixer le
nombre de bits du mot. Ceci permet de déterminer la position du signe et sa valeur.

Représentation de nombres binaires A. Nketsa 17

Décimal_signé vers binaire_signé

dec_sg  0

Conversion habituelle de dec_sg

(cv_dec_ns_binaire (dec_sg))

Extension du nombre sur le
nombre de bits de la représentation :
 Ajouter des 0 à gauche

- Calcul valeur absolue de dec_sg

N_abs = - dec_sg

Conversion de N_abs comme
dec_sg  0 + extension nbre bits

(cv_dec_ns_binaire(N_abs))

Prendre le cpl à 2 du résultat binaire

Identifier le nombre de bits de la représentation

cv_dec_sg_vers_Binaire















Exemple
Convertir en binaire signé en complément à 2 sur 8bits
a) -102 b) +102
 nombre de bits = 8  nombre de bits = 8
 -102 < 0

 102 ≥ 0

 Valeur absolue
 -102= 102

 positif ou nul  conversion habituelle
décimal binaire naturel 102 = 70H =
01110000b

 Conversion en binaire avec
extension 102 = 70h = 01110000b

 Complément à deux de 01110000
 10001111
 + 1
 10010000

Résultat -102 = 10010000b

Résultat +102 = 01110000b

Représentation de nombres binaires A. Nketsa 18

Binaire_signé vers decimal_signé

Bit_signe = 0

Conversion habituelle de binaire en dec_ns

cv_binaire_vers_dec_ns (binaire_sg)

Affecter le signe plus (+)au résultat

-Calcul valeur absolue de binaire_sg
B_abs = cpl à 2 de binaire_sg

Affecter le moins (-) plus au résultat

Identifier le nombre de bits de la représentation

cv_binaire_sg_vers_dec_sg

Conversion habituelle de binaire vers dec_ns

cv_binaire_vers_dec_ns (B_abs)















Exemple
Convertir en décimal signé le nombre binaire en complément à 2 sur
8bits
a) 11111111b b) 00111111b
 nombre de bits = 8  nombre de bits = 8
 bit de signe = 1 donc nbre < 0

 bit de signe = 0 donc nbre ≥ 0

 Valeur absolue
11111111b= Cpl2 de 11111111b
 = 00000001b

 positif ou nul  conversion habituelle
décimal vers binaire naturel
00111111b=3FH = 63

 Conversion en décimal de l
avaleur absolue
 00000001h = 01H = 1

 Résultat +63

 -1

Résultat 11111111b = -1

Résultat 00111111b = +63

Représentation de nombres binaires A. Nketsa 19

4-4 Nombre BCD ou Code BCD

Définition
Un nombre BCD (Binary coded decimal) ou en français (DCB =décimal codé
binaire) est un nombre binaire sur quatre bits représentant le code binaire d'un
chiffre décimal.
On peut mettre plusieurs nombres BCD côte à côte pour avoir l’équivalent d’un
nombre décimal, on dit alors que c'est BCD packed.

Correspondance BCD simple
Chiffre
décimal

0 1 2 3 4 5 6 7 8 9

Code
BCD

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

BCD Packed
45H = 01000101b = 45 en décimal

Remarques importantes :
1- Tout nombre BCD est binaire
Exemple
Le nombre binaire 100100001000b est BCD car les groupes de 4bits de droite à gauche 1001 0000
1000b ont tous leur valeur décimale correspondante  9

2- Tout nombre binaire n’est pas BCD
Exemple
Le nombre binaire 101100001000b n'est pas BCD car parmi les groupes de 4bits de droite à gauche 1001
0000 1011b au moins un groupe > 9

Représentation de nombres binaires A. Nketsa 20

Code ascii
Table

Représentation de nombres binaires A. Nketsa 21

4-5 Représentation des nombres binaires en virgule fixe et en flottant

4-5-1- Nombres binaires fractionnaires
Un nombre binaire fractionnaire est un nombre ayant deux parties séparées par une
virgule (,) : la partie entière et la partie fractionnaire.
La partie entière vaut 0
La partie fractionnaire est décrite avec des puissances négatives de la base

Formule générale :

Nfractionnaire = 




mj

1i

j-2*aj

Exemple
(0,01)2 = 0*2-1 + 1*2-2
 = 0*0,5 + 1*0,25 = 0,25

Conversions

Partie fractionnaire
a) Décimal – binaire

La partie fractionnaire est convertie comme un nombre binaire non signé par divisions
successives mais comme on divise par 2-1 cela revient à multiplier les résultats par 2 puis on
garde pour le codage la partie entière qui peut être 0 ou 1 et on reprend la partie
fractionnaire pour la multiplication suivante.

Exemple : Convertir 0,62 en binaire
Il faut noter que la partie fractionnaire peut être illimitée. Dans la pratique, on doit
cependant fixer le nombre bits.

0,62 * 2 = 1,24 on garde 1 puis on recommence le processus avec 0,24
0,24 * 2 = 0,48 on garde 0 puis on recommence le processus avec 0,48
0,48 * 2 = 0,96 on garde 0 puis on recommence le processus avec 0,96

On arrête par exemple à la troisième décimale
 D'où 0,62 = 0,100b

b) Binaire – décimal
On applique la formule d'expression de la partie fractionnaire. La partie fractionnaire est une
somme pondérée des puissances négatives de 2 avec comme coefficients de pondération
ai  [0,1].

Exemple convertir en décimal le nombre binaire fractionnaire 0,1101b
0*20 + 1*2-1 + 1*2-2 + 0*2-3 + 1*2-4 = 0,8125

 Remarque :
 On peut éviter les puissances négatives de 2 en procédant de la façon suivante :

- On compte le nombre de bits, x, de la partie fractionnaire
- On convertit en binaire sans tenir compte de la virgule
- On divise le résultat obtenu par 2x
Application :
0,1101 on considère la partie fractionnaire 1101
 On a 4 bits et 1101 = 13
 Donc la partie fractionnaire vaut 13/24 = 0,8125

Représentation de nombres binaires A. Nketsa 22

4-5-2- Nombres binaires en virgule fixe
4-5-2-1 Nombres binaires positifs ou nul en virgule fixe
Un nombre binaire en virgule fixe comporte deux parties :

- une parie entière, placée avant la virgule
- une partie fractionnaire placé après la virgule
(an-1..a0 , e-1..e-m)virgule_fixe

Formule générale :

Nréel = 




1-ni

-mi

i2*bi = 




1-ni

-0i

i2*ai + 




-1i

-mi

i2*ei

n est le nombre de bits avant la virgule
m est le nombre de bits après la virgule

Comme on ne peut pas introduire la virgule comme un symbole supplémentaire en binaire, et
comme son nom l'indique, pour en faire une utilisation cohérente, il est conseillé de fixer par
convention la position de la virgule (,).

Conversions
Il est conseillé de convertir chaque partie individuellement puis de transcrire les résultats en les
séparant par une virgule (,).
Se reporter aux nombres binaires fractionnaires

Exemple
a) Décimal vers virgule fixe
Convertir 47,70 en binaire virgule fixe

On convertit la partie entière et la partie fractionnaire
(47) = 101111b

On convertit la partie fractionnaire
0,70 * 2 = 1,40 bit -1 = 1 on recommence avec 0,40
0,40 * 2 = 0,80 bit -2 = 0 on recommence avec 0,80
0,80 * 2 = 1,60 bit -3 = 1 on recommence avec 0,60
0,60 * 2 = 1,20 bit -3 = 1 on recommence avec 0,20

Nous arrêtons ici parce que la suite peut être très longue.
 0,70 = (0,1011b)

 47,70 = (101111,1011b)

b) Virgule fixe vers décimal
 Convertir en décimal le nombre en virgule fixe 1100,11101b

On convertit chaque partie :

Partie entière
1100b = 12

Partie fractionnaire

0,11101b = 0*20 + 1*2-1 + 1*2-2 + 1*2-3 + 0*2-4 + 1*2-5 = 0,90625

 Ou (11101) = 29 / 25 = 0,90625

1100,11101b = 12,90625

Représentation de nombres binaires A. Nketsa 23

4-5-2-2 Nombres binaires signés en virgule fixe

Mêmes règles que pour les nombres binaires signés sans virgule
- Bit de signe
- Règles de conversion en décimal

Remarque importante
On fait le calcul du complément à deux sans tenir compte de la virgule.
On replace la virgule après le calcul.

Exemple
On considère un nombre en virgule fixe avec 8bits partie entière et 4 bits partie fractionnaire
Convertir en décimal le nombre 11110000,1010b

- bit de signe = 1 donc nombre < 0

- On prend la valeur absolue = cpl2 (11110000,1010)
Soit 00001111,0101
 + 1

 Résultat 00001111,0110

- D'où la valeur absolue 15, 375

- 11110000,1010b = -15,375

Représentation de nombres binaires A. Nketsa 24

4-6-Nombres binaires en virgule flottante
La représentation en virgule flottante est un codage qui permet d'augmenter la dynamique et la
précision de représentation des nombres binaires. Elle permet de se rapprocher des nombres réels.
La représentation en virgule flottante est un codage permettant de transcrire la fonction :

N =  M x Be
N est un nombre réel, M est appelé la mantisse, B est la base et e est l'exposant

Dans notre cas B sera égal 2 (base binaire)

En binaire, on ne peut pas ajouter des symboles, il faut définir par convention ce qui représente
chaque élément de la formule.

Une solution consiste à :

- définir la taille du mot binaire représentant le nombre flottant
- définir l'organisation du mot binaire en indiquant la place et la taille de l'exposant, de la

mantisse et de son signe

 Exemple de mot binaire et son organisation:
Code_signe Code_exposant Code_mantisse

1bit e_bit m_bit

La base est implicite mais on doit fixer le nombre de bits (1 + e_bit + m_bit) de la représentation en
indiquant le nombre de bits associé au :

- codage du signe de la mantisse, code_signe (1bit)
- codage de l'exposant, code_exposant (e_bit)
- codage de la mantisse, code_mantisse (m_bit)

Cette représentation peut être normalisée sous plusieurs formats. Il faut donc définir les relations
entre la formule générale et le codage, c'est-à-dire entre :

code_signe et le signe du nombre
code_exposant et e
code_mantisse et M

Représentation de nombres binaires A. Nketsa 25

Standard IEEE754
Nous allons considérer le standard IEEE 754 qui est couramment utilisé par les compilateurs de

langages informatiques et en électronique numérique.
Il définit deux formats de représentations de nombre en flottant:
- une représentation sur 32bits (simple précision)
- une représentation sur 64bits (double précision)

Nous allons faire cette présentation avec le format simple précision

Flottant simple précision IEEE754

Code_signe Code_exposant Code_mantisse
1bit 8bits 23bits

Le codage du signe sera sur un bit avec la convention habituelle

0 = positif ou nul 1 = négatif

Le codage de l'exposant sera sur 8 bits avec un décalage (aussi appelé biais).
Le décalage (= 2n-1) est souvent exprimé en fonction du nombre de bits de codage de l'exposant.
n est le nombre de bits de codage de l'exposant avec la relation :

e = code_exposant – décalage.

Comme n = 8, décalage = 127. Donc e =code_exposant – 127.

Le codage de la mantisse sera sur 23bits.
On admettra que la mantisse est de la forme 1,ffffff mais on ne stockera que la partie fractionnaire
0, ffffff et on considèrera dans le cas général que la partie entière 1 est implicite.

Nous nous limiterons aux nombres normalisés

D'où la formule générale pour les nombres normalisés
 Nréel = (-1)code_signe * (1+ (code_mantisse)fractionnaire) * 2(code_exposant - 127)
 avec code_exposant ≠ 0 et 255

Représentation de nombres binaires A. Nketsa 26

Cas particuliers de la représentation
Cette représentation permet de représenter un nombre fini de possibilités. Par ailleurs, elle ne

permet pas de bien représenter tous les cas de figure que nous allons traiter comme des cas
particuliers qui sont définis par la convention de la norme.

a) Représentation de 0
 code_exposant = 0 et code_mantisse = 0
 Cette convention conduit à un 0 positif et un 0 négatif

b) Représentation des nombres dénormalisés (nombres très petits)
 code_exposant = 0 et code_mantisse ≠ 0
 Nréel = (-1)code_signe * (code_mantisse)fractionnaire * 2(0)

Dans ce cas exposant est par convention -126 pour la conversion

c) Représentation de l'infini
 code_exposant = 255 et code_mantisse = 0 (Utilisée pour la division par 0)
 donc + est représenté par code_signe = 0
 - est représenté par code_signe = 1

c) Représentation d'un nombre non reconnu (utilisée pour la division /)
 code_exposant = 255 et code_mantisse ≠ 0

Quelques exemples
Nombre réel (N) signe code_exposant code_mantisse valeur
+0 0 00000000 000 0000 0000 0000 0000 0000 0.0
-0 1 00000000 000 0000 0000 0000 0000 0000 -0.0
+ 0 11111111 000 0000 0000 0000 0000 0000 +
- 1 11111111 000 0000 0000 0000 0000 0000 -
NaN * 11111111 ≠ 0 Non nombre
Plus petit N ≥ 0
dénormalisé

0 00000000 000 0000 0000 0000 0000 0001 (-1)0 *2-126 *2-23
= 2-149
= 5,9*10-39

Plus grand N ≥ 0
normalisé

0 11111110 111 1111 1111 1111 1111 1111 (-1)0 *2127 *…
= 3,4028*1038

Plus petit N ≥ 0
normalisé

0 00000001 000 0000 0000 0000 0000 0000 2-126
= 1,1754*10-38

Représentation de nombres binaires A. Nketsa 27

Conversions décimal  flottant

Ndecimal = 2exposantxMantisse Codage IEEE754

code_signe code_exposant code_mantisse

bit31 bit30 bit23 bit22 bit0

a) Conversion décimal  flottant
Elle revient :
- à calculer code_signe, code_exposant et code_mantisse
- à constituer les 32bits

Par simplification, on ne traitera que le cas des nombres normalisés
Cependant, on traitera les cas particuliers de 0 et 

D’où l'organigramme

nb_dec=0 nb_dec=+ nb_dec=-

code_signe=0
code_exposant = 0
code_mantisse = 0

code_signe=0
code_exposant = 255
code_mantisse = 0

code_signe=1
code_exposant = 255
code_mantisse = 0

normalisé

Détermination de signe, exposant, mantisse
1) signe = 0 si nb_decimal  0 sinon signe =1
2) calculer la valeur absolue de nb_decimal, abs
3) convertir abs en virgule fixe
4) mettre abs virgule_fixe en 1,FFFFFFF

par déplacement de la virgule
- vers la gauche on multiplie par 2n

- vers la droite on multiplie par 2-n

n est le nombre de déplacements
5) on en déduit :

exposant et mantisse
6) d'où code_signe = signe

code_exposant = exposant +127
code_mantissse = FFFFFF

code_signe code_exposant code_mantisse

bit31 bit30 bit23 bit22 bit0

Exemple :
Convertir 12,25 en flottant
Nombre ≥ 0 Code_signe = 0
On procède comme en virgule fixe pour la valeur absolue
12,125 = 1100,001
On déplace la virgule pour avoir l'exposant et la mantisse
 1100,001 = 1,100001*23

Exposant = 3 Code_exposant = exposant +127 = 130
 Soit en binaire sur 8 bits 10000010b
Mantisse = 1,100001 Code_mantisse = 10000100000…0

12,125 en flottant 0 10000010 10000100000000000000000b

Représentation de nombres binaires A. Nketsa 28

b) Conversion flottant  décimal
Elle revient
- à identifier dans les 32 bits code_signe, code_exposant et code_mantisse
- si code_signe, code_exposant et code_mantisse représentent 0 ou 

alors
la conversion est faite par convention

sinon
en déduire signe, exposant = code_exposant -127 et mantisse = 1,code_mantisse
et par suite le N = Ndecimal = 2exposant.Mantisse

code_exposant=0

code_mantisse=0

signe= code_signe

Nreel = (-1)signe * 0

zéro

Nombre dénormalisé

Signe=code_signe
Exposant = -126
Mantisse= code_mantisse
Nreel = (-1)signe * 2(-126) * mantisse

code_exposant=255

code_mantisse=0

signe= code_signe

Nreel = (-1)signe * 

Infini Not a number (NaN)

Nombre non reconnu

Signe=code_signe
Exposant = code_exposant + 127
Mantisse= 1,code_mantisse
Nreel = (-1)signe * 2(exposant) * mantisse

Nombre normalisé

Code_exposant
est un nombre binaire signé en cpl2

Exemple
Convertir le nombre en flottant : C142000H

- On convertit en binaire pour identifier les champs

1100 0001 0100 0010 0000 0000 0000 0000
1 10000010 100 0010 0000 0000 0000 0000

1 10000010 10000100000 0000 0000 0000
Code_signe code_exposant code_mantisse
Signe = - exposant = code_exposant -127

donc exposant = 130 – 127 = 3
Mantisse = 1,code_mantisse
Donc matisse = 1,1000010000000

 N= - 1,1000010000 *23 = -1100,0010 = -12,125

