Circuits Hyperfrequences - Semestre 3
Annee: 2021-2022 | Semestre: 3 | Type: Technique
PART A - Presentation Generale du Cours
Contexte et objectifs
Ce cours de S3 specialisation ENOC introduit la conception de circuits fonctionnant aux frequences RF et micro-ondes (100 MHz - 10+ GHz). Il combine theorie electromagnetique, simulation EM 3D et realisation pratique sur PCB, avec caracterisation par analyseur de reseau vectoriel.
Objectifs principaux :
- Maitriser les technologies de circuits RF planaires (microstrip, stripline, CPW)
- Concevoir filtres, adaptations d'impedance, diviseurs de puissance
- Simuler avec outils EM professionnels (ADS Momentum, HFSS, CST)
- Fabriquer sur PCB et mesurer avec VNA
- Comprendre phenomenes HF : effet de peau, pertes dielectriques, couplages
Prerequis
- Propagation et Hyperfrequences S3 (lignes de transmission, Smith chart, parametres S)
- Electronique analogique (composants passifs, filtrage)
- Conception PCB (ER S1-S2)
PART B: EXPERIENCE, CONTEXTE ET FONCTION
Module 1 : Technologies RF sur PCB
Substrats RF :
- FR-4 : er~4.3-4.7, tan d~0.02, economique, limite <3 GHz
- Rogers RO4003/RO4350 : er stable (3.38/3.48), faibles pertes, 0-10+ GHz
- PTFE/Teflon : er~2.1, tres faibles pertes, difficile a usiner
Lignes microstrip :
- Calcul largeur pour Z0=50 Ohm : W~3mm (FR-4 1.6mm), er_eff~3.2
- Pertes : conducteur (cuivre) + dielectrique (tan d)
- Applications : alimentations, adaptations
Composants passifs RF :
- Resistances 50 Ohm (charges, attenuateurs)
- Condensateurs RF CMS (resonance serie SRF critique)
- Inductances (bobines air, CMS, facteur Q)
- Vias de masse (stitching lambda/10)
Module 2 : Circuits d'adaptation et filtres
Reseaux d'adaptation localises (L, pi, T) :
- Transformation impedance avec L/C CMS
- Calcul par Smith chart
- Bande etroite
Adaptation distribuee :
- Stub simple (serie/parallele) : position et longueur
- Ligne lambda/4 : Z_lambda/4 = sqrt(Z1 * Z2)
- Double stub : positions fixes 3lambda/8
Filtres microstrip :
- Passe-bas/haut/bande a elements localises
- Filtres a stubs (bande-stop)
- Filtres a lignes couplees (passe-bande)
- Synthese : Butterworth, Chebyshev
Coupleurs et diviseurs :
- Diviseur Wilkinson : division egale, isolation, resistance 100 Ohm
- Coupleur directionnel : couplage -3/-10/-20 dB
- Rat-race : 180 deg hybrid, 3lambda/2 circonference
Module 3 : Simulation EM
Logiciels professionnels :
- ADS Momentum : 2.5D planar, rapide
- HFSS : 3D FEM, precis
- CST : 3D temps/frequence
- Sonnet : 2.5D, gratuit version limitee
Workflow simulation :
- Schematique circuit (calcul initial)
- Layout PCB (dessin geometrie)
- Simulation EM 3D (champs, courants)
- Optimisation parametres
- Validation specs (S-parameters)
Parametres analyses :
- S11 (adaptation), S21 (transmission)
- Champs E et H
- Courants de surface
- Pertes (conducteur, dielectrique, rayonnement)
PART C: ASPECTS TECHNIQUES
Projets pratiques
Projet 1 : Filtre passe-bande 2.4 GHz
- Specs : f0=2.4 GHz, BW=200 MHz, IL<3 dB
- Topologie : lignes couplees ou stubs
- Simulation ADS → Layout → Fabrication PCB → Mesure VNA
Projet 2 : Diviseur Wilkinson
- Division 50 Ohm → 2x50 Ohm
- Lignes lambda/4 a 70.7 Ohm
- Isolation >20 dB
Projet 3 : Adaptation stub
- Charge complexe ZL → 50 Ohm
- Calcul Smith chart
- Stub court-circuit ou ouvert
Caracterisation VNA
Calibration :
- SOLT : Short, Open, Load, Thru
- TRL pour substrats specifiques
- Kit de calibration precis
Mesures :
- Parametres S (magnitude, phase)
- Smith chart impedance
- TDR (Time Domain Reflectometry)
- Comparaison simulation vs mesure
Fabrication PCB RF
Fichiers Gerber :
- Couches cuivre (Top, Bottom)
- Plans de masse continus
- Drill (vias)
- Soldermask, Silkscreen
Fabricants :
- PCBWay, JLCPCB (economique)
- Eurocircuits (professionnel EU)
- Specifier : substrat, epaisseur, er, finition (ENIG recommande RF)
PART D: ANALYSE ET REFLEXION
Evaluation
- Projets simulation + realisation (60%)
- Mesures et rapports (25%)
- Examen theorique (15%)
Competences acquises
- Simulation EM 3D professionnelle
- Conception circuits RF planaires
- Utilisation VNA
- Optimisation performances RF
- Design for Manufacturing RF
Applications industrielles
- Telecommunications (WiFi, 4G/5G, satellite)
- IoT (LoRa, Sigfox, Bluetooth)
- Radar automobile
- Instrumentation RF
Technologies de circuits RF
Substrats RF
FR-4 :
- er ~ 4.3-4.7 (variable)
- tan d ~ 0.02 (pertes elevees)
- Economique
- Limite a quelques GHz
Rogers (RO4003, RO4350) :
- er stable (3.38, 3.48)
- tan d faible (0.0027)
- Bon jusqu'a 10+ GHz
- Plus cher
PTFE/Teflon :
- er ~ 2.1-2.5
- tan d tres faible
- Hautes performances
- Difficile a usiner
Lignes de transmission sur PCB
Microstrip :
- Ligne sur face superieure
- Plan de masse en dessous
- Facile a fabriquer
- Emissions rayonnees
Stripline :
- Ligne entre deux plans de masse
- Bien blindee
- PCB multicouche requis
Coplanar waveguide (CPW) :
- Plans de masse sur meme face
- Bon pour composants CMS
- Bonne isolation
Composants passifs RF
Resistances
- Charges 50 Ohm
- Attenuateurs
- Terminaisons
- Modeles hautes frequences
Condensateurs
- Capacites de decouplage
- Resonance serie (SRF)
- ESL et ESR
- Condensateurs RF (ATC, AVX)
Inductances
- Bobines air
- Inductances CMS
- Facteur de qualite Q
- Auto-resonance
Vias
- Via de masse (stitching)
- Via thermique
- Inductance parasite
- Espacement recommande
Circuits d'adaptation
Reseaux L, pi, T
- Composants localises
- Calcul analytique
- Simulation (Smith chart)
- Realisation CMS
Adaptation distribuee
- Stubs microstrip
- Lignes lambda/4
- Multi-sections
- Large bande
Filtres RF
Filtres a elements localises
- Passe-bas, passe-haut, passe-bande
- Butterworth, Chebyshev
- Transformation LC
- Realisation CMS
Filtres distribues
- Filtres a stubs
- Filtres a lignes couplees
- Filtres interdigites
- Resonateurs
Coupleurs et diviseurs
Coupleur directionnel
- Couplage -3dB, -10dB, -20dB
- Isolation
- Directivite
- Applications (mesure, feedback)
Diviseur de Wilkinson
- Division de puissance egale
- Isolation entre sorties
- Impedances 50 Ohm
- Resistance d'isolation
Rat-race (anneau hybride)
- Combineur/diviseur 180 deg
- 4 ports
- lambda_g x 3/2 circonference
Oscillateurs RF
Oscillateurs a quartz
- Frequence fixe precise
- Stabilite
- TCXO, OCXO
VCO (Voltage Controlled Oscillator)
- Frequence variable
- PLL (Phase-Locked Loop)
- Plage d'accord
- Bruit de phase
Amplificateurs RF
Classes d'amplification
- Classe A (lineaire)
- Classe B, AB (push-pull)
- Classe C (RF, non lineaire)
- Classe E, F (commutation)
Caracteristiques
- Gain (dB)
- P1dB (point de compression a 1dB)
- IP3 (point d'interception d'ordre 3)
- Facteur de bruit (NF)
- Stabilite (K-factor, mu)
Travaux pratiques
Conception de composants RF
Projet 1 : Filtre passe-bande
- Specifications (f0, BW, IL)
- Calcul et simulation
- Layout PCB
- Caracterisation
Projet 2 : Diviseur de puissance
- Wilkinson 50 Ohm
- Simulation EM
- Fabrication
- Mesure parametres S
Projet 3 : Ligne d'adaptation
- Stub ou lambda/4
- Dimensionnement
- Optimisation
- Tests sur VNA
Simulation et conception
Etapes
- Calcul theorique : Formules, Smith chart
- Simulation circuit : Schematique
- Simulation EM : Layout 3D
- Optimisation : Tuning parametres
- Generation Gerber : Fabrication
Fabrication
Methodes
- Gravure chimique : Proto rapide
- Fraiseuse CNC : Precision
- Fabrication professionnelle : Production
Fichiers necessaires
- Gerber (couches cuivre)
- Drill (percages)
- Soldermask (vernis)
- Silkscreen (serigraphie)
Caracterisation
Mesures avec VNA
- Calibration (SOLT, TRL)
- Parametres S (S11, S21)
- Smith chart
- Comparaison simulation/mesure
Parametres mesures
- Pertes d'insertion (IL)
- Pertes de retour (RL)
- Isolation
- Bande passante
- Impedance
Outils utilises
Simulation RF
- ADS (Advanced Design System) : Keysight
- AWR Microwave Office : Cadence
- Qucs : Open source
- LTspice : Circuits RF
Simulation EM
- Momentum : Integre ADS (2.5D)
- HFSS : Ansys (3D)
- CST Microwave Studio : 3D
- Sonnet : 2.5D planar
CAO PCB
- Altium Designer
- KiCad : Open source
- Eagle
- PADS
Mesure
- Analyseur de reseau vectoriel (VNA)
- Analyseur de spectre
- Generateur RF
- Oscilloscope haute frequence
Exemples de dimensionnement
Ligne microstrip 50 Ohm (FR-4, h=1.6mm)
- Largeur W ~ 3 mm
- er = 4.3
- er_eff ~ 3.2
- Z0 = 50 Ohm
Stub lambda/4 a 2.4 GHz
- lambda_0 = 125 mm
- lambda_g = lambda_0/sqrt(er_eff) ~ 70 mm
- Longueur stub ~ 17.5 mm
Diviseur Wilkinson 2.4 GHz
- Lignes lambda/4 a 70.7 Ohm
- Resistance isolation 100 Ohm
- Impedance entree/sorties 50 Ohm
Regles de conception RF
Layout PCB
- Plans de masse : Continus, via stitching
- Largeur de piste : Controlee (50 Ohm)
- Courbures : Rayon > 3x largeur
- Espacement : Eviter couplages parasites
- Vias : Minimiser sur lignes RF
Decouplage
- Condensateurs proches des composants
- Multiple valeurs (nF, uF)
- Via court vers masse
- Plans de masse separes (analogique/numerique)
Blindage
- Boitier metallique si necessaire
- Cloisons entre sections
- Absorption RF (ferrites, mousses)
Competences developpees
- Simulation EM 3D
- Conception de circuits RF sur PCB
- Utilisation d'analyseur de reseau
- Optimisation de performances RF
- Fabrication de circuits micro-ondes
- Analyse de resultats de mesure
Phenomenes hautes frequences
Effet de peau
- Profondeur de penetration delta
- Resistance AC > DC
- Depend de la frequence
- Cuivre argente pour ameliorer
Pertes dielectriques
- tan d du substrat
- Augmentent avec frequence
- Chauffage du PCB
- Choix substrat crucial
Couplages
- Couplage capacitif (E-field)
- Couplage inductif (H-field)
- Couplage par substrat
- Espacement et blindage
Modes parasites
- Modes de cavite
- Resonances indesirables
- Rayonnement
- Via fencing pour mitiger
Erreurs a eviter
Conception
- Plans de masse discontinus
- Lignes d'impedance non controlee
- Transitions brusques (stubs, angles droits)
- Sous-estimation des pertes
Fabrication
- Epaisseur cuivre non uniforme
- Gravure excessive ou insuffisante
- Desalignement des couches
- Qualite soudures CMS RF
Mesure
- Calibration inadequate
- Connecteurs mal serres
- Cables endommages
- Gamme de frequence incorrecte
Processus de conception typique
Phase 1 : Specifications
- Frequence de travail
- Impedance (50 Ohm typique)
- Performances requises
- Contraintes (taille, cout)
Phase 2 : Conception theorique
- Calculs analytiques
- Choix de topologie
- Simulation schematique
- Validation concept
Phase 3 : Layout et EM
- Dessin PCB
- Simulation EM 3D
- Optimisation dimensions
- Verification DRC
Phase 4 : Fabrication
- Generation fichiers Gerber
- Choix fabricant
- Reception et inspection
- Assemblage CMS
Phase 5 : Test
- Calibration VNA
- Mesures parametres S
- Comparaison avec simulation
- Ajustements (tuning)
Ressources
- Application notes fabricants (Mini-Circuits, Analog Devices)
- "Microwave Engineering" - Pozar
- "RF Circuit Design" - Bowick
- Tutoriels ADS/AWR
- Calculateurs en ligne (impedance, attenuation)
Microwave Circuits - Semester 3
Year: 2021-2022 | Semester: 3 | Type: Technical
PART A - General Course Overview
Context and objectives
This S3 ENOC specialization course introduces the design of circuits operating at RF and microwave frequencies (100 MHz - 10+ GHz). It combines electromagnetic theory, 3D EM simulation and practical PCB fabrication, with characterization using a vector network analyzer.
Main objectives:
- Master planar RF circuit technologies (microstrip, stripline, CPW)
- Design filters, impedance matching networks, power dividers
- Simulate with professional EM tools (ADS Momentum, HFSS, CST)
- Fabricate on PCB and measure with VNA
- Understand HF phenomena: skin effect, dielectric losses, coupling
Prerequisites
- Propagation and Microwaves S3 (transmission lines, Smith chart, S-parameters)
- Analog electronics (passive components, filtering)
- PCB design (ER S1-S2)
PART B: EXPERIENCE, CONTEXT AND FUNCTION
Module 1: RF technologies on PCB
RF substrates:
- FR-4: er~4.3-4.7, tan d~0.02, economical, limited <3 GHz
- Rogers RO4003/RO4350: stable er (3.38/3.48), low losses, 0-10+ GHz
- PTFE/Teflon: er~2.1, very low losses, difficult to machine
Microstrip lines:
- Width calculation for Z0=50 Ohm: W~3mm (FR-4 1.6mm), er_eff~3.2
- Losses: conductor (copper) + dielectric (tan d)
- Applications: feeds, matching
RF passive components:
- 50 Ohm resistors (loads, attenuators)
- RF SMD capacitors (series resonance SRF critical)
- Inductors (air coils, SMD, Q factor)
- Ground vias (stitching lambda/10)
Module 2: Matching circuits and filters
Lumped matching networks (L, pi, T):
- Impedance transformation with SMD L/C
- Smith chart calculation
- Narrowband
Distributed matching:
- Single stub (series/parallel): position and length
- Lambda/4 line: Z_lambda/4 = sqrt(Z1 * Z2)
- Double stub: fixed positions 3lambda/8
Microstrip filters:
- Low-pass/high-pass/bandpass with lumped elements
- Stub filters (band-stop)
- Coupled-line filters (bandpass)
- Synthesis: Butterworth, Chebyshev
Couplers and dividers:
- Wilkinson divider: equal division, isolation, 100 Ohm resistor
- Directional coupler: -3/-10/-20 dB coupling
- Rat-race: 180 deg hybrid, 3lambda/2 circumference
Module 3: EM simulation
Professional software:
- ADS Momentum: 2.5D planar, fast
- HFSS: 3D FEM, accurate
- CST: 3D time/frequency
- Sonnet: 2.5D, free limited version
Simulation workflow:
- Circuit schematic (initial calculation)
- PCB layout (geometry drawing)
- 3D EM simulation (fields, currents)
- Parameter optimization
- Spec validation (S-parameters)
Analyzed parameters:
- S11 (matching), S21 (transmission)
- E and H fields
- Surface currents
- Losses (conductor, dielectric, radiation)
PART C: TECHNICAL ASPECTS
Practical projects
Project 1: 2.4 GHz bandpass filter
- Specs: f0=2.4 GHz, BW=200 MHz, IL<3 dB
- Topology: coupled lines or stubs
- ADS simulation → Layout → PCB fabrication → VNA measurement
Project 2: Wilkinson divider
- 50 Ohm division → 2x50 Ohm
- Lambda/4 lines at 70.7 Ohm
- Isolation >20 dB
Project 3: Stub matching
- Complex load ZL → 50 Ohm
- Smith chart calculation
- Short-circuit or open stub
VNA characterization
Calibration:
- SOLT: Short, Open, Load, Thru
- TRL for specific substrates
- Precision calibration kit
Measurements:
- S-parameters (magnitude, phase)
- Smith chart impedance
- TDR (Time Domain Reflectometry)
- Simulation vs measurement comparison
RF PCB fabrication
Gerber files:
- Copper layers (Top, Bottom)
- Continuous ground planes
- Drill (vias)
- Soldermask, Silkscreen
Manufacturers:
- PCBWay, JLCPCB (economical)
- Eurocircuits (professional EU)
- Specify: substrate, thickness, er, finish (ENIG recommended for RF)
PART D: ANALYSIS AND REFLECTION
Assessment
- Simulation + fabrication projects (60%)
- Measurements and reports (25%)
- Theoretical exam (15%)
Skills acquired
- Professional 3D EM simulation
- Planar RF circuit design
- VNA usage
- RF performance optimization
- RF Design for Manufacturing
Industrial applications
- Telecommunications (WiFi, 4G/5G, satellite)
- IoT (LoRa, Sigfox, Bluetooth)
- Automotive radar
- RF instrumentation
RF circuit technologies
RF substrates
FR-4:
- er ~ 4.3-4.7 (variable)
- tan d ~ 0.02 (high losses)
- Economical
- Limited to a few GHz
Rogers (RO4003, RO4350):
- Stable er (3.38, 3.48)
- Low tan d (0.0027)
- Good up to 10+ GHz
- More expensive
PTFE/Teflon:
- er ~ 2.1-2.5
- Very low tan d
- High performance
- Difficult to machine
Transmission lines on PCB
Microstrip:
- Line on top face
- Ground plane below
- Easy to fabricate
- Radiated emissions
Stripline:
- Line between two ground planes
- Well shielded
- Multilayer PCB required
Coplanar waveguide (CPW):
- Ground planes on same face
- Good for SMD components
- Good isolation
RF passive components
Resistors
- 50 Ohm loads
- Attenuators
- Terminations
- High frequency models
Capacitors
- Decoupling capacitors
- Series resonance (SRF)
- ESL and ESR
- RF capacitors (ATC, AVX)
Inductors
- Air coils
- SMD inductors
- Quality factor Q
- Self-resonance
Vias
- Ground via (stitching)
- Thermal via
- Parasitic inductance
- Recommended spacing
Matching circuits
L, pi, T networks
- Lumped components
- Analytical calculation
- Simulation (Smith chart)
- SMD implementation
Distributed matching
- Microstrip stubs
- Lambda/4 lines
- Multi-section
- Wideband
RF filters
Lumped element filters
- Low-pass, high-pass, bandpass
- Butterworth, Chebyshev
- LC transformation
- SMD implementation
Distributed filters
- Stub filters
- Coupled-line filters
- Interdigital filters
- Resonators
Couplers and dividers
Directional coupler
- Coupling -3dB, -10dB, -20dB
- Isolation
- Directivity
- Applications (measurement, feedback)
Wilkinson divider
- Equal power division
- Output isolation
- 50 Ohm impedances
- Isolation resistor
Rat-race (hybrid ring)
- 180 deg combiner/divider
- 4 ports
- lambda_g x 3/2 circumference
RF oscillators
Crystal oscillators
- Precise fixed frequency
- Stability
- TCXO, OCXO
VCO (Voltage Controlled Oscillator)
- Variable frequency
- PLL (Phase-Locked Loop)
- Tuning range
- Phase noise
RF amplifiers
Amplification classes
- Class A (linear)
- Class B, AB (push-pull)
- Class C (RF, nonlinear)
- Class E, F (switching)
Characteristics
- Gain (dB)
- P1dB (1dB compression point)
- IP3 (third-order intercept point)
- Noise figure (NF)
- Stability (K-factor, mu)
Practical work
RF component design
Project 1: Bandpass filter
- Specifications (f0, BW, IL)
- Calculation and simulation
- PCB layout
- Characterization
Project 2: Power divider
- 50 Ohm Wilkinson
- EM simulation
- Fabrication
- S-parameter measurement
Project 3: Matching line
- Stub or lambda/4
- Sizing
- Optimization
- VNA testing
Simulation and design
Steps
- Theoretical calculation: Formulas, Smith chart
- Circuit simulation: Schematic
- EM simulation: 3D layout
- Optimization: Parameter tuning
- Gerber generation: Fabrication
Fabrication
Methods
- Chemical etching: Rapid prototyping
- CNC milling: Precision
- Professional fabrication: Production
Required files
- Gerber (copper layers)
- Drill (drilling)
- Soldermask (varnish)
- Silkscreen (marking)
Characterization
VNA measurements
- Calibration (SOLT, TRL)
- S-parameters (S11, S21)
- Smith chart
- Simulation/measurement comparison
Measured parameters
- Insertion loss (IL)
- Return loss (RL)
- Isolation
- Bandwidth
- Impedance
Tools used
RF simulation
- ADS (Advanced Design System): Keysight
- AWR Microwave Office: Cadence
- Qucs: Open source
- LTspice: RF circuits
EM simulation
- Momentum: Integrated in ADS (2.5D)
- HFSS: Ansys (3D)
- CST Microwave Studio: 3D
- Sonnet: 2.5D planar
PCB CAD
- Altium Designer
- KiCad: Open source
- Eagle
- PADS
Measurement
- Vector Network Analyzer (VNA)
- Spectrum analyzer
- RF generator
- High frequency oscilloscope
Sizing examples
50 Ohm microstrip line (FR-4, h=1.6mm)
- Width W ~ 3 mm
- er = 4.3
- er_eff ~ 3.2
- Z0 = 50 Ohm
Lambda/4 stub at 2.4 GHz
- lambda_0 = 125 mm
- lambda_g = lambda_0/sqrt(er_eff) ~ 70 mm
- Stub length ~ 17.5 mm
Wilkinson divider 2.4 GHz
- Lambda/4 lines at 70.7 Ohm
- 100 Ohm isolation resistor
- 50 Ohm input/output impedance
RF design rules
PCB layout
- Ground planes: Continuous, via stitching
- Track width: Controlled (50 Ohm)
- Bends: Radius > 3x width
- Spacing: Avoid parasitic coupling
- Vias: Minimize on RF lines
Decoupling
- Capacitors close to components
- Multiple values (nF, uF)
- Short via to ground
- Separate ground planes (analog/digital)
Shielding
- Metal enclosure if necessary
- Partitions between sections
- RF absorption (ferrites, foams)
Skills developed
- 3D EM simulation
- RF circuit design on PCB
- Network analyzer usage
- RF performance optimization
- Microwave circuit fabrication
- Measurement result analysis
High frequency phenomena
Skin effect
- Penetration depth delta
- AC resistance > DC
- Frequency dependent
- Silver-plated copper for improvement
Dielectric losses
- Substrate tan d
- Increase with frequency
- PCB heating
- Substrate choice crucial
Coupling
- Capacitive coupling (E-field)
- Inductive coupling (H-field)
- Substrate coupling
- Spacing and shielding
Parasitic modes
- Cavity modes
- Unwanted resonances
- Radiation
- Via fencing to mitigate
Mistakes to avoid
Design
- Discontinuous ground planes
- Uncontrolled impedance lines
- Abrupt transitions (stubs, right angles)
- Underestimating losses
Fabrication
- Non-uniform copper thickness
- Excessive or insufficient etching
- Layer misalignment
- RF SMD solder quality
Measurement
- Inadequate calibration
- Loose connectors
- Damaged cables
- Incorrect frequency range
Typical design process
Phase 1: Specifications
- Operating frequency
- Impedance (50 Ohm typical)
- Required performance
- Constraints (size, cost)
Phase 2: Theoretical design
- Analytical calculations
- Topology choice
- Schematic simulation
- Concept validation
Phase 3: Layout and EM
- PCB drawing
- 3D EM simulation
- Dimension optimization
- DRC verification
Phase 4: Fabrication
- Gerber file generation
- Manufacturer selection
- Reception and inspection
- SMD assembly
Phase 5: Test
- VNA calibration
- S-parameter measurements
- Comparison with simulation
- Adjustments (tuning)
Resources
- Manufacturer application notes (Mini-Circuits, Analog Devices)
- "Microwave Engineering" - Pozar
- "RF Circuit Design" - Bowick
- ADS/AWR tutorials
- Online calculators (impedance, attenuation)
Circuits et Fonctions Hyperfrequences
Microwave Circuits and Functions
Support de cours complet sur les circuits hyperfrequences : lignes de transmission, adaptation d'impedance, filtres HF et composants passifs distribues.
Complete course material on microwave circuits: transmission lines, impedance matching, HF filters and distributed passive components.